jadechoghari
commited on
Commit
•
a051d95
1
Parent(s):
2899431
Create merge.py
Browse files
merge.py
ADDED
@@ -0,0 +1,767 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Tuple, Callable
|
3 |
+
|
4 |
+
|
5 |
+
def do_nothing(x: torch.Tensor, mode: str = None):
|
6 |
+
return x
|
7 |
+
|
8 |
+
|
9 |
+
def mps_gather_workaround(input, dim, index):
|
10 |
+
if input.shape[-1] == 1:
|
11 |
+
return torch.gather(
|
12 |
+
input.unsqueeze(-1),
|
13 |
+
dim - 1 if dim < 0 else dim,
|
14 |
+
index.unsqueeze(-1)
|
15 |
+
).squeeze(-1)
|
16 |
+
else:
|
17 |
+
return torch.gather(input, dim, index)
|
18 |
+
|
19 |
+
# For Local Token Merging
|
20 |
+
def bipartite_soft_matching_randframe(metric: torch.Tensor,
|
21 |
+
F: int, ratio: float, unm_pre: int, generator: torch.Generator,
|
22 |
+
target_stride: int = 4, align_batch: bool = False,
|
23 |
+
merge_mode: str = "replace") -> Tuple[Callable, Callable, dict]:
|
24 |
+
"""
|
25 |
+
Partitions the multi-frame tokens into src and dst and merges ratio of src tokens from src to dst.
|
26 |
+
Dst tokens are partitioned by choosing one random frame.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
- metric [B, N, C]: metric to use for similarity.
|
30 |
+
- F: frame number.
|
31 |
+
- ratio: ratio of src tokens to be removed (by merging).
|
32 |
+
- unm_pre: number of src tokens not merged at previous ToMe. Pre-sequence: [unm_pre|F_0|F_1|...]
|
33 |
+
- generator: random number generator
|
34 |
+
- target_stride: stride of target frame.
|
35 |
+
- align_batch: whether to align similarity matching maps of samples in the batch. True when using PnP.
|
36 |
+
- merge_mode: how to merge tokens. "mean": tokens -> Mean(src_token, dst_token); "replace": tokens -> dst_token.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
Merge and unmerge operation according to the matching result. Return a dict including other values.
|
40 |
+
"""
|
41 |
+
B, N, _ = metric.shape
|
42 |
+
# Compute pre-frame token number. N = unm_pre + tnum * F.
|
43 |
+
tnum = (N - unm_pre) // F
|
44 |
+
|
45 |
+
if ratio <= 0:
|
46 |
+
return do_nothing, do_nothing, {"unm_num": tnum}
|
47 |
+
|
48 |
+
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
|
49 |
+
|
50 |
+
with torch.no_grad():
|
51 |
+
# Prepare idx buffer. Ignore previous unmerged tokens.
|
52 |
+
idx_buffer = torch.arange(
|
53 |
+
N - unm_pre, device=metric.device, dtype=torch.int64)
|
54 |
+
|
55 |
+
# Select the random target frame.
|
56 |
+
target_stride = min(target_stride, F)
|
57 |
+
randf = torch.randint(0, target_stride, torch.Size(
|
58 |
+
[1]), generator=generator, device=generator.device)
|
59 |
+
dst_select = ((torch.div(idx_buffer, tnum, rounding_mode='floor')) %
|
60 |
+
target_stride == randf).to(torch.bool)
|
61 |
+
|
62 |
+
# a_idx: src index. b_idx: dst index
|
63 |
+
a_idx = idx_buffer[None, ~dst_select, None] + unm_pre
|
64 |
+
b_idx = idx_buffer[None, dst_select, None] + unm_pre
|
65 |
+
|
66 |
+
# Add unmerged tokens to dst.
|
67 |
+
unm_buffer = torch.arange(unm_pre, device=metric.device, dtype=torch.int64)[
|
68 |
+
None, :, None]
|
69 |
+
b_idx = torch.cat([b_idx, unm_buffer], dim=1)
|
70 |
+
|
71 |
+
# We're finished with these
|
72 |
+
del idx_buffer, unm_buffer
|
73 |
+
|
74 |
+
num_dst = b_idx.shape[1]
|
75 |
+
|
76 |
+
def split(x):
|
77 |
+
# Split src, dst tokens
|
78 |
+
b, n, c = x.shape
|
79 |
+
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
|
80 |
+
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
|
81 |
+
return src, dst
|
82 |
+
|
83 |
+
# Cosine similarity between src and dst tokens
|
84 |
+
metric = metric / metric.norm(dim=-1, keepdim=True)
|
85 |
+
a, b = split(metric)
|
86 |
+
|
87 |
+
scores = a @ b.transpose(-1, -2)
|
88 |
+
|
89 |
+
# Can't reduce more than the # tokens in src
|
90 |
+
r = min(a.shape[1], int(a.shape[1] * ratio))
|
91 |
+
|
92 |
+
|
93 |
+
if align_batch:
|
94 |
+
# Cat scores of all samples in the batch. When using PnP, samples are (src, neg, pos).
|
95 |
+
# Find the most similar greedily among all samples.
|
96 |
+
scores = torch.cat([*scores], dim=-1)
|
97 |
+
node_max, node_idx = scores.max(dim=-1)
|
98 |
+
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
|
99 |
+
|
100 |
+
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
|
101 |
+
src_idx = edge_idx[..., :r, :] # Merged Tokens
|
102 |
+
dst_idx = gather(node_idx[..., None],
|
103 |
+
dim=-2, index=src_idx) % num_dst # Map index to (0, num_dst - 1)
|
104 |
+
|
105 |
+
# Use the same matching result for all samples
|
106 |
+
unm_idx = unm_idx.expand(B, -1, -1)
|
107 |
+
src_idx = src_idx.expand(B, -1, -1)
|
108 |
+
dst_idx = dst_idx.expand(B, -1, -1)
|
109 |
+
else:
|
110 |
+
|
111 |
+
# Find the most similar greedily
|
112 |
+
node_max, node_idx = scores.max(dim=-1)
|
113 |
+
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
|
114 |
+
|
115 |
+
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
|
116 |
+
src_idx = edge_idx[..., :r, :] # Merged Tokens
|
117 |
+
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
|
118 |
+
|
119 |
+
def merge(x: torch.Tensor, mode=None) -> torch.Tensor:
|
120 |
+
# Merge tokens according to matching result.
|
121 |
+
src, dst = split(x)
|
122 |
+
n, t1, c = src.shape
|
123 |
+
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
|
124 |
+
|
125 |
+
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
|
126 |
+
mode = mode if mode is not None else merge_mode
|
127 |
+
if mode != "replace":
|
128 |
+
src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
|
129 |
+
# In other mode such as mean, combine matched src and dst tokens.
|
130 |
+
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c),
|
131 |
+
src, reduce=mode, include_self=True)
|
132 |
+
# In replace mode, just cat unmerged tokens and dst tokens. Ignore src tokens.
|
133 |
+
return torch.cat([unm, dst], dim=1)
|
134 |
+
|
135 |
+
def unmerge(x: torch.Tensor, **kwarg) -> torch.Tensor:
|
136 |
+
# Unmerge tokens to original size according to matching result.
|
137 |
+
unm_len = unm_idx.shape[1]
|
138 |
+
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
|
139 |
+
b, _, c = unm.shape
|
140 |
+
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
|
141 |
+
# Restored src tokens take value from dst tokens
|
142 |
+
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
|
143 |
+
|
144 |
+
# Combine back to the original shape
|
145 |
+
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
|
146 |
+
# Scatter dst tokens
|
147 |
+
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
|
148 |
+
# Scatter unmerged tokens
|
149 |
+
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
|
150 |
+
dim=1, index=u_idx).expand(-1, -1, c), src=unm)
|
151 |
+
# Scatter src tokens
|
152 |
+
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
|
153 |
+
dim=1, index=s_idx).expand(-1, -1, c), src=src)
|
154 |
+
|
155 |
+
return out
|
156 |
+
|
157 |
+
# Return number of tokens not merged.
|
158 |
+
ret_dict = {"unm_num": unm_idx.shape[1] if unm_idx.shape[1] is not None else 0}
|
159 |
+
return merge, unmerge, ret_dict
|
160 |
+
|
161 |
+
|
162 |
+
def bipartite_soft_matching_random2d_hier(metric: torch.Tensor, frame_num: int, ratio: float, unm_pre: int, generator: torch.Generator, target_stride: int = 4, adhere_src: bool = False, merge_mode: str = "replace", scores = None, coord = None, rec_field = 2) -> Tuple[Callable, Callable]:
|
163 |
+
"""
|
164 |
+
Partitions the tokens into src and dst and merges r tokens from src to dst.
|
165 |
+
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
|
166 |
+
|
167 |
+
Args:
|
168 |
+
- metric [B, N, C]: metric to use for similarity
|
169 |
+
- w: image width in tokens
|
170 |
+
- h: image height in tokens
|
171 |
+
- sx: stride in the x dimension for dst, must divide w
|
172 |
+
- sy: stride in the y dimension for dst, must divide h
|
173 |
+
- r: number of tokens to remove (by merging)
|
174 |
+
- no_rand: if true, disable randomness (use top left corner only)
|
175 |
+
- rand_seed: if no_rand is false, and if not None, sets random seed.
|
176 |
+
"""
|
177 |
+
B, N, _ = metric.shape
|
178 |
+
F = frame_num
|
179 |
+
nf = (N - unm_pre) // F
|
180 |
+
|
181 |
+
if ratio <= 0:
|
182 |
+
return do_nothing, do_nothing
|
183 |
+
|
184 |
+
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
|
185 |
+
|
186 |
+
with torch.no_grad():
|
187 |
+
|
188 |
+
|
189 |
+
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
|
190 |
+
idx_buffer = torch.arange(N - unm_pre, device=metric.device, dtype=torch.int64)
|
191 |
+
|
192 |
+
|
193 |
+
# randn = torch.randint(0, F, torch.Size([nf])).to(idx_buffer) * nf
|
194 |
+
# dst_indexes = torch.arange(nf, device=metric.device, dtype=torch.int64) + randn
|
195 |
+
# dst_select = torch.zeros_like(idx_buffer).to(torch.bool)
|
196 |
+
# dst_select[dst_indexes] = 1
|
197 |
+
max_f = min(target_stride, F)
|
198 |
+
randn = torch.randint(0, max_f, torch.Size([1]), generator=generator, device = generator.device)
|
199 |
+
# randn = 0
|
200 |
+
dst_select = ((torch.div(idx_buffer, nf, rounding_mode='floor')) % max_f == randn).to(torch.bool)
|
201 |
+
# dst_select = ((idx_buffer // nf) == 0).to(torch.bool)
|
202 |
+
a_idx = idx_buffer[None, ~dst_select, None] + unm_pre
|
203 |
+
b_idx = idx_buffer[None, dst_select, None] + unm_pre
|
204 |
+
|
205 |
+
unm_buffer = torch.arange(unm_pre, device=metric.device, dtype=torch.int64)[None,:,None]
|
206 |
+
b_idx = torch.cat([b_idx, unm_buffer], dim = 1)
|
207 |
+
|
208 |
+
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
|
209 |
+
|
210 |
+
# We're finished with these
|
211 |
+
del idx_buffer, unm_buffer
|
212 |
+
|
213 |
+
num_dst = b_idx.shape[1]
|
214 |
+
|
215 |
+
def split(x):
|
216 |
+
b, n, c = x.shape
|
217 |
+
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
|
218 |
+
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
|
219 |
+
return src, dst
|
220 |
+
|
221 |
+
def split_coord(coord):
|
222 |
+
b, n, c = coord.shape
|
223 |
+
src = gather(coord, dim=1, index=a_idx.expand(b, n - num_dst, c))
|
224 |
+
dst = gather(coord, dim=1, index=b_idx.expand(b, num_dst, c))
|
225 |
+
return src, dst
|
226 |
+
|
227 |
+
|
228 |
+
# Cosine similarity between A and B
|
229 |
+
metric = metric / metric.norm(dim=-1, keepdim=True)
|
230 |
+
a, b = split(metric)
|
231 |
+
|
232 |
+
|
233 |
+
if coord is not None:
|
234 |
+
src_coord, dst_coord = split_coord(coord)
|
235 |
+
mask = torch.norm(src_coord[:,:,None,:] - dst_coord[:,None,:,:], dim=-1) > rec_field
|
236 |
+
|
237 |
+
|
238 |
+
scores = a @ b.transpose(-1, -2)
|
239 |
+
|
240 |
+
if coord is not None:
|
241 |
+
scores[mask] = 0
|
242 |
+
|
243 |
+
# Can't reduce more than the # tokens in src
|
244 |
+
r = int(a.shape[1] * ratio)
|
245 |
+
r = min(a.shape[1], r)
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
if adhere_src:
|
250 |
+
# scores = torch.sum(scores, dim=0)
|
251 |
+
scores = torch.cat([*scores], dim = -1)
|
252 |
+
node_max, node_idx = scores.max(dim=-1)
|
253 |
+
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
|
254 |
+
|
255 |
+
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
|
256 |
+
src_idx = edge_idx[..., :r, :] # Merged Tokens
|
257 |
+
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
|
258 |
+
|
259 |
+
unm_idx = unm_idx.expand(B, -1, -1)
|
260 |
+
src_idx = src_idx.expand(B, -1, -1)
|
261 |
+
dst_idx = dst_idx.expand(B, -1, -1)
|
262 |
+
else:
|
263 |
+
# scores = torch.cat([*scores][1:], dim = -1)
|
264 |
+
# node_max, node_idx = scores.max(dim=-1)
|
265 |
+
# edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
|
266 |
+
|
267 |
+
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
|
268 |
+
# src_idx = edge_idx[..., :r, :] # Merged Tokens
|
269 |
+
# dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
|
270 |
+
|
271 |
+
# unm_idx = unm_idx.expand(B, -1, -1)
|
272 |
+
# src_idx = src_idx.expand(B, -1, -1)
|
273 |
+
# dst_idx = dst_idx.expand(B, -1, -1)
|
274 |
+
|
275 |
+
|
276 |
+
# Find the most similar greedily
|
277 |
+
node_max, node_idx = scores.max(dim=-1)
|
278 |
+
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
|
279 |
+
|
280 |
+
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
|
281 |
+
src_idx = edge_idx[..., :r, :] # Merged Tokens
|
282 |
+
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
|
283 |
+
|
284 |
+
# if adhere_src:
|
285 |
+
# unm_idx[:,...] = unm_idx[0:1]
|
286 |
+
# src_idx[:,...] = src_idx[0:1]
|
287 |
+
# dst_idx[:,...] = dst_idx[0:1]
|
288 |
+
|
289 |
+
def merge(x: torch.Tensor, mode=None, b_select = None, **kwarg) -> torch.Tensor:
|
290 |
+
src, dst = split(x)
|
291 |
+
n, t1, c = src.shape
|
292 |
+
if b_select is not None:
|
293 |
+
if not isinstance(b_select, list):
|
294 |
+
b_select = [b_select]
|
295 |
+
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
|
296 |
+
else:
|
297 |
+
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
|
298 |
+
|
299 |
+
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
|
300 |
+
src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
|
301 |
+
mode = mode if mode is not None else merge_mode
|
302 |
+
if mode != "replace":
|
303 |
+
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c), src, reduce=mode, include_self=True)
|
304 |
+
# dst = dst.scatter(-2, dst_idx.expand(n, r, c), src, reduce='add')
|
305 |
+
|
306 |
+
# dst_cnt = torch.ones_like(dst)
|
307 |
+
# src_ones = torch.ones_like(src)
|
308 |
+
# dst_cnt = dst_cnt.scatter(-2, dst_idx.expand(n, r, c), src_ones, reduce='add')
|
309 |
+
|
310 |
+
# dst = dst / dst_cnt
|
311 |
+
# dst2 = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode, include_self=True)
|
312 |
+
# assert torch.allclose(dst1, dst2)
|
313 |
+
|
314 |
+
return torch.cat([unm, dst], dim=1)
|
315 |
+
|
316 |
+
def unmerge(x: torch.Tensor, b_select = None, unm_modi = None, **kwarg) -> torch.Tensor:
|
317 |
+
unm_len = unm_idx.shape[1]
|
318 |
+
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
|
319 |
+
b, _, c = unm.shape
|
320 |
+
if b_select is not None:
|
321 |
+
if not isinstance(b_select, list):
|
322 |
+
b_select = [b_select]
|
323 |
+
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
|
324 |
+
else:
|
325 |
+
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
|
326 |
+
if unm_modi is not None:
|
327 |
+
if unm_modi == "zero":
|
328 |
+
unm = torch.zeros_like(unm)
|
329 |
+
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
|
330 |
+
|
331 |
+
# Combine back to the original shape
|
332 |
+
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
|
333 |
+
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
|
334 |
+
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=u_idx).expand(-1, -1, c), src=unm)
|
335 |
+
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=s_idx).expand(-1, -1, c), src=src)
|
336 |
+
|
337 |
+
return out
|
338 |
+
|
339 |
+
ret_dict = {"unm_num": unm_idx.shape[1]}
|
340 |
+
return merge, unmerge, ret_dict
|
341 |
+
|
342 |
+
# For Global Token Merging.
|
343 |
+
def bipartite_soft_matching_2s( metric: torch.Tensor,
|
344 |
+
src_len: int, ratio: float, align_batch: bool,
|
345 |
+
merge_mode: str = "replace", unmerge_chunk: int = 0) -> Tuple[Callable, Callable, dict]:
|
346 |
+
"""
|
347 |
+
Partitions the tokens into src and dst and merges ratio of src tokens from src to dst.
|
348 |
+
Src tokens are partitioned as first src_len tokens. Others are dst tokens.
|
349 |
+
|
350 |
+
Args:
|
351 |
+
- metric [B, N, C]: metric to use for similarity.
|
352 |
+
- src_len: src token length. [ src | dst ]: [ src_len | N - src_len ]
|
353 |
+
- ratio: ratio of src tokens to be removed (by merging).
|
354 |
+
- unm_pre: number of src tokens not merged at previous ToMe. Pre-sequence: [unm_pre|F_0|F_1|...]
|
355 |
+
- align_batch: whether to align similarity matching maps of samples in the batch. True when using PnP.
|
356 |
+
- merge_mode: how to merge tokens. "mean": tokens -> Mean(src_token, dst_token); "replace": tokens -> dst_token.
|
357 |
+
- unmerge_chunk: return which partition in unmerge. 0 for src and 1 for dst.
|
358 |
+
|
359 |
+
Returns:
|
360 |
+
Merge and unmerge operation according to the matching result. Return a dict including other values.
|
361 |
+
"""
|
362 |
+
B, N, _ = metric.shape
|
363 |
+
|
364 |
+
if ratio <= 0:
|
365 |
+
return do_nothing, do_nothing
|
366 |
+
|
367 |
+
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
|
368 |
+
|
369 |
+
with torch.no_grad():
|
370 |
+
|
371 |
+
idx_buffer = torch.arange(N, device=metric.device, dtype=torch.int64)
|
372 |
+
|
373 |
+
# [ src | dst ]: [ src_len | N - src_len ]
|
374 |
+
a_idx = idx_buffer[None, :src_len, None]
|
375 |
+
b_idx = idx_buffer[None, src_len:, None]
|
376 |
+
|
377 |
+
del idx_buffer
|
378 |
+
|
379 |
+
num_dst = b_idx.shape[1]
|
380 |
+
|
381 |
+
def split(x):
|
382 |
+
# Split src, dst tokens
|
383 |
+
b, n, c = x.shape
|
384 |
+
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
|
385 |
+
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
|
386 |
+
return src, dst
|
387 |
+
|
388 |
+
# Cosine similarity between src and dst tokens
|
389 |
+
metric = metric / metric.norm(dim=-1, keepdim=True)
|
390 |
+
a, b = split(metric)
|
391 |
+
|
392 |
+
scores = a @ b.transpose(-1, -2)
|
393 |
+
|
394 |
+
# Can't reduce more than the # tokens in src
|
395 |
+
r = min(a.shape[1], int(a.shape[1] * ratio))
|
396 |
+
|
397 |
+
if align_batch:
|
398 |
+
# Cat scores of all samples in the batch. When using PnP, samples are (src, neg, pos).
|
399 |
+
# Find the most similar greedily among all samples.
|
400 |
+
scores = torch.cat([*scores], dim=-1)
|
401 |
+
node_max, node_idx = scores.max(dim=-1)
|
402 |
+
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
|
403 |
+
|
404 |
+
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
|
405 |
+
src_idx = edge_idx[..., :r, :] # Merged Tokens
|
406 |
+
dst_idx = gather(node_idx[..., None],
|
407 |
+
dim=-2, index=src_idx) % num_dst # Map index to (0, num_dst - 1)
|
408 |
+
|
409 |
+
# Use the same matching result for all samples
|
410 |
+
unm_idx = unm_idx.expand(B, -1, -1)
|
411 |
+
src_idx = src_idx.expand(B, -1, -1)
|
412 |
+
dst_idx = dst_idx.expand(B, -1, -1)
|
413 |
+
else:
|
414 |
+
|
415 |
+
# Find the most similar greedily
|
416 |
+
node_max, node_idx = scores.max(dim=-1)
|
417 |
+
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
|
418 |
+
|
419 |
+
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
|
420 |
+
src_idx = edge_idx[..., :r, :] # Merged Tokens
|
421 |
+
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
|
422 |
+
|
423 |
+
def merge(x: torch.Tensor, mode=None) -> torch.Tensor:
|
424 |
+
# Merge tokens according to matching result.
|
425 |
+
src, dst = split(x)
|
426 |
+
n, t1, c = src.shape
|
427 |
+
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
|
428 |
+
|
429 |
+
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
|
430 |
+
mode = mode if mode is not None else merge_mode
|
431 |
+
if mode != "replace":
|
432 |
+
src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
|
433 |
+
# In other mode such as mean, combine matched src and dst tokens.
|
434 |
+
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c),
|
435 |
+
src, reduce=mode, include_self=True)
|
436 |
+
# In replace mode, just cat unmerged tokens and dst tokens. Discard src tokens.
|
437 |
+
return torch.cat([unm, dst], dim=1)
|
438 |
+
|
439 |
+
def unmerge(x: torch.Tensor, **kwarg) -> torch.Tensor:
|
440 |
+
# Unmerge tokens to original size according to matching result.
|
441 |
+
unm_len = unm_idx.shape[1]
|
442 |
+
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
|
443 |
+
b, _, c = unm.shape
|
444 |
+
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
|
445 |
+
# Restored src tokens take value from dst tokens
|
446 |
+
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
|
447 |
+
|
448 |
+
# Combine back to the original shape
|
449 |
+
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
|
450 |
+
# Scatter dst tokens
|
451 |
+
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
|
452 |
+
# Scatter unmerged tokens
|
453 |
+
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
|
454 |
+
dim=1, index=u_idx).expand(-1, -1, c), src=unm)
|
455 |
+
# Scatter src tokens
|
456 |
+
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
|
457 |
+
dim=1, index=s_idx).expand(-1, -1, c), src=src)
|
458 |
+
|
459 |
+
out = out[:, :src_len, :] if unmerge_chunk == 0 else out[:, src_len:, :]
|
460 |
+
return out
|
461 |
+
|
462 |
+
ret_dict = {"unm_num": unm_idx.shape[1]}
|
463 |
+
return merge, unmerge, ret_dict
|
464 |
+
|
465 |
+
|
466 |
+
# Original ToMe
|
467 |
+
def bipartite_soft_matching_random2d(metric: torch.Tensor,
|
468 |
+
w: int, h: int, sx: int, sy: int, r: int,
|
469 |
+
no_rand: bool = False,
|
470 |
+
generator: torch.Generator = None) -> Tuple[Callable, Callable]:
|
471 |
+
"""
|
472 |
+
Partitions the tokens into src and dst and merges r tokens from src to dst.
|
473 |
+
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
|
474 |
+
|
475 |
+
Args:
|
476 |
+
- metric [B, N, C]: metric to use for similarity
|
477 |
+
- w: image width in tokens
|
478 |
+
- h: image height in tokens
|
479 |
+
- sx: stride in the x dimension for dst, must divide w
|
480 |
+
- sy: stride in the y dimension for dst, must divide h
|
481 |
+
- r: number of tokens to remove (by merging)
|
482 |
+
- no_rand: if true, disable randomness (use top left corner only)
|
483 |
+
- rand_seed: if no_rand is false, and if not None, sets random seed.
|
484 |
+
"""
|
485 |
+
B, N, _ = metric.shape
|
486 |
+
|
487 |
+
if r <= 0:
|
488 |
+
return do_nothing, do_nothing
|
489 |
+
|
490 |
+
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
|
491 |
+
|
492 |
+
with torch.no_grad():
|
493 |
+
hsy, wsx = h // sy, w // sx
|
494 |
+
|
495 |
+
# For each sy by sx kernel, randomly assign one token to be dst and the rest src
|
496 |
+
if no_rand:
|
497 |
+
rand_idx = torch.zeros(
|
498 |
+
hsy, wsx, 1, device=metric.device, dtype=torch.int64)
|
499 |
+
else:
|
500 |
+
rand_idx = torch.randint(
|
501 |
+
sy*sx, size=(hsy, wsx, 1), device=generator.device, generator=generator).to(metric.device)
|
502 |
+
|
503 |
+
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
|
504 |
+
idx_buffer_view = torch.zeros(
|
505 |
+
hsy, wsx, sy*sx, device=metric.device, dtype=torch.int64)
|
506 |
+
idx_buffer_view.scatter_(
|
507 |
+
dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype))
|
508 |
+
idx_buffer_view = idx_buffer_view.view(
|
509 |
+
hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx)
|
510 |
+
|
511 |
+
# Image is not divisible by sx or sy so we need to move it into a new buffer
|
512 |
+
if (hsy * sy) < h or (wsx * sx) < w:
|
513 |
+
idx_buffer = torch.zeros(
|
514 |
+
h, w, device=metric.device, dtype=torch.int64)
|
515 |
+
idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view
|
516 |
+
else:
|
517 |
+
idx_buffer = idx_buffer_view
|
518 |
+
|
519 |
+
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
|
520 |
+
rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1)
|
521 |
+
|
522 |
+
# We're finished with these
|
523 |
+
del idx_buffer, idx_buffer_view
|
524 |
+
|
525 |
+
# rand_idx is currently dst|src, so split them
|
526 |
+
num_dst = hsy * wsx
|
527 |
+
a_idx = rand_idx[:, num_dst:, :] # src
|
528 |
+
b_idx = rand_idx[:, :num_dst, :] # dst
|
529 |
+
|
530 |
+
def split(x):
|
531 |
+
C = x.shape[-1]
|
532 |
+
src = gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C))
|
533 |
+
dst = gather(x, dim=1, index=b_idx.expand(B, num_dst, C))
|
534 |
+
return src, dst
|
535 |
+
|
536 |
+
# Cosine similarity between A and B
|
537 |
+
metric = metric / metric.norm(dim=-1, keepdim=True)
|
538 |
+
a, b = split(metric)
|
539 |
+
scores = a @ b.transpose(-1, -2)
|
540 |
+
|
541 |
+
# Can't reduce more than the # tokens in src
|
542 |
+
r = min(a.shape[1], r)
|
543 |
+
|
544 |
+
# Find the most similar greedily
|
545 |
+
node_max, node_idx = scores.max(dim=-1)
|
546 |
+
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
|
547 |
+
|
548 |
+
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
|
549 |
+
src_idx = edge_idx[..., :r, :] # Merged Tokens
|
550 |
+
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
|
551 |
+
|
552 |
+
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
|
553 |
+
src, dst = split(x)
|
554 |
+
n, t1, c = src.shape
|
555 |
+
|
556 |
+
unm = gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c))
|
557 |
+
src = gather(src, dim=-2, index=src_idx.expand(n, r, c))
|
558 |
+
dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode)
|
559 |
+
|
560 |
+
return torch.cat([unm, dst], dim=1)
|
561 |
+
|
562 |
+
def unmerge(x: torch.Tensor) -> torch.Tensor:
|
563 |
+
unm_len = unm_idx.shape[1]
|
564 |
+
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
|
565 |
+
_, _, c = unm.shape
|
566 |
+
|
567 |
+
src = gather(dst, dim=-2, index=dst_idx.expand(B, r, c))
|
568 |
+
|
569 |
+
# Combine back to the original shape
|
570 |
+
out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype)
|
571 |
+
out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst)
|
572 |
+
out.scatter_(dim=-2, index=gather(a_idx.expand(B,
|
573 |
+
a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), src=unm)
|
574 |
+
out.scatter_(dim=-2, index=gather(a_idx.expand(B,
|
575 |
+
a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), src=src)
|
576 |
+
|
577 |
+
return out
|
578 |
+
|
579 |
+
return merge, unmerge
|
580 |
+
|
581 |
+
|
582 |
+
def bipartite_soft_matching_2f(metric: torch.Tensor, src_len: int, ratio: float, adhere_src: bool, merge_mode: str = "replace", scores = None, coord = None, rec_field = 2, unmerge_chunk = 0) -> Tuple[Callable, Callable]:
|
583 |
+
"""
|
584 |
+
Partitions the tokens into src and dst and merges r tokens from src to dst.
|
585 |
+
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
|
586 |
+
|
587 |
+
Args:
|
588 |
+
- metric [B, N, C]: metric to use for similarity
|
589 |
+
- w: image width in tokens
|
590 |
+
- h: image height in tokens
|
591 |
+
- sx: stride in the x dimension for dst, must divide w
|
592 |
+
- sy: stride in the y dimension for dst, must divide h
|
593 |
+
- r: number of tokens to remove (by merging)
|
594 |
+
- no_rand: if true, disable randomness (use top left corner only)
|
595 |
+
- rand_seed: if no_rand is false, and if not None, sets random seed.
|
596 |
+
"""
|
597 |
+
B, N, _ = metric.shape
|
598 |
+
|
599 |
+
if ratio <= 0:
|
600 |
+
return do_nothing, do_nothing
|
601 |
+
|
602 |
+
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
|
603 |
+
|
604 |
+
with torch.no_grad():
|
605 |
+
|
606 |
+
|
607 |
+
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
|
608 |
+
idx_buffer = torch.arange(N, device=metric.device, dtype=torch.int64)
|
609 |
+
|
610 |
+
|
611 |
+
# randn = torch.randint(0, F, torch.Size([nf])).to(idx_buffer) * nf
|
612 |
+
# dst_indexes = torch.arange(nf, device=metric.device, dtype=torch.int64) + randn
|
613 |
+
# dst_select = torch.zeros_like(idx_buffer).to(torch.bool)
|
614 |
+
# dst_select[dst_indexes] = 1
|
615 |
+
# randn = 0
|
616 |
+
# dst_select = ((idx_buffer // nf) == 0).to(torch.bool)
|
617 |
+
a_idx = idx_buffer[None, :src_len, None]
|
618 |
+
b_idx = idx_buffer[None, src_len:, None]
|
619 |
+
|
620 |
+
|
621 |
+
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
|
622 |
+
|
623 |
+
# We're finished with these
|
624 |
+
del idx_buffer
|
625 |
+
|
626 |
+
num_dst = b_idx.shape[1]
|
627 |
+
|
628 |
+
def split(x):
|
629 |
+
b, n, c = x.shape
|
630 |
+
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
|
631 |
+
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
|
632 |
+
return src, dst
|
633 |
+
|
634 |
+
def split_coord(coord):
|
635 |
+
b, n, c = coord.shape
|
636 |
+
src = gather(coord, dim=1, index=a_idx.expand(b, n - num_dst, c))
|
637 |
+
dst = gather(coord, dim=1, index=b_idx.expand(b, num_dst, c))
|
638 |
+
return src, dst
|
639 |
+
|
640 |
+
|
641 |
+
# Cosine similarity between A and B
|
642 |
+
metric = metric / metric.norm(dim=-1, keepdim=True)
|
643 |
+
a, b = split(metric)
|
644 |
+
|
645 |
+
|
646 |
+
if coord is not None:
|
647 |
+
src_coord, dst_coord = split_coord(coord)
|
648 |
+
mask = torch.norm(src_coord[:,:,None,:] - dst_coord[:,None,:,:], dim=-1) > rec_field
|
649 |
+
|
650 |
+
|
651 |
+
scores = a @ b.transpose(-1, -2)
|
652 |
+
|
653 |
+
if coord is not None:
|
654 |
+
scores[mask] = 0
|
655 |
+
|
656 |
+
# Can't reduce more than the # tokens in src
|
657 |
+
r = int(a.shape[1] * ratio)
|
658 |
+
r = min(a.shape[1], r)
|
659 |
+
|
660 |
+
|
661 |
+
|
662 |
+
if adhere_src:
|
663 |
+
scores = torch.cat([*scores], dim = -1)
|
664 |
+
# scores = torch.sum(scores, dim=0)
|
665 |
+
node_max, node_idx = scores.max(dim=-1)
|
666 |
+
|
667 |
+
# nscores = torch.cat([*scores], dim = -2)
|
668 |
+
# rev_node_max, rev_node_idx = nscores.max(dim = -2)
|
669 |
+
|
670 |
+
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
|
671 |
+
|
672 |
+
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
|
673 |
+
src_idx = edge_idx[..., :r, :] # Merged Tokens
|
674 |
+
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
|
675 |
+
|
676 |
+
unm_idx = unm_idx.expand(B, -1, -1)
|
677 |
+
src_idx = src_idx.expand(B, -1, -1)
|
678 |
+
dst_idx = dst_idx.expand(B, -1, -1)
|
679 |
+
else:
|
680 |
+
# scores = torch.cat([*scores][1:], dim = -1)
|
681 |
+
# node_max, node_idx = scores.max(dim=-1)
|
682 |
+
# edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
|
683 |
+
|
684 |
+
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
|
685 |
+
# src_idx = edge_idx[..., :r, :] # Merged Tokens
|
686 |
+
# dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
|
687 |
+
|
688 |
+
# unm_idx = unm_idx.expand(B, -1, -1)
|
689 |
+
# src_idx = src_idx.expand(B, -1, -1)
|
690 |
+
# dst_idx = dst_idx.expand(B, -1, -1)
|
691 |
+
|
692 |
+
|
693 |
+
# Find the most similar greedily
|
694 |
+
node_max, node_idx = scores.max(dim=-1)
|
695 |
+
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
|
696 |
+
|
697 |
+
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
|
698 |
+
src_idx = edge_idx[..., :r, :] # Merged Tokens
|
699 |
+
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
|
700 |
+
|
701 |
+
# if adhere_src:
|
702 |
+
# unm_idx[:,...] = unm_idx[0:1]
|
703 |
+
# src_idx[:,...] = src_idx[0:1]
|
704 |
+
# dst_idx[:,...] = dst_idx[0:1]
|
705 |
+
|
706 |
+
def merge(x: torch.Tensor, mode=None, b_select = None) -> torch.Tensor:
|
707 |
+
|
708 |
+
src, dst = split(x)
|
709 |
+
n, t1, c = src.shape
|
710 |
+
if b_select is not None:
|
711 |
+
if not isinstance(b_select, list):
|
712 |
+
b_select = [b_select]
|
713 |
+
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
|
714 |
+
else:
|
715 |
+
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
|
716 |
+
|
717 |
+
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
|
718 |
+
# src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
|
719 |
+
mode = mode if mode is not None else merge_mode
|
720 |
+
if mode != "replace":
|
721 |
+
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c), src, reduce=mode, include_self=True)
|
722 |
+
# dst = dst.scatter(-2, dst_idx.expand(n, r, c), src, reduce='add')
|
723 |
+
|
724 |
+
# dst_cnt = torch.ones_like(dst)
|
725 |
+
# src_ones = torch.ones_like(src)
|
726 |
+
# dst_cnt = dst_cnt.scatter(-2, dst_idx.expand(n, r, c), src_ones, reduce='add')
|
727 |
+
|
728 |
+
# dst = dst / dst_cnt
|
729 |
+
# dst2 = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode, include_self=True)
|
730 |
+
# assert torch.allclose(dst1, dst2)
|
731 |
+
|
732 |
+
return torch.cat([unm, dst], dim=1)
|
733 |
+
|
734 |
+
def unmerge(x: torch.Tensor, b_select = None, unm_modi = None) -> torch.Tensor:
|
735 |
+
|
736 |
+
|
737 |
+
|
738 |
+
unm_len = unm_idx.shape[1]
|
739 |
+
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
|
740 |
+
b, _, c = unm.shape
|
741 |
+
if b_select is not None:
|
742 |
+
if not isinstance(b_select, list):
|
743 |
+
b_select = [b_select]
|
744 |
+
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
|
745 |
+
else:
|
746 |
+
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
|
747 |
+
if unm_modi is not None:
|
748 |
+
if unm_modi == "zero":
|
749 |
+
unm = torch.zeros_like(unm)
|
750 |
+
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
|
751 |
+
|
752 |
+
# Combine back to the original shape
|
753 |
+
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
|
754 |
+
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
|
755 |
+
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=u_idx).expand(-1, -1, c), src=unm)
|
756 |
+
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=s_idx).expand(-1, -1, c), src=src)
|
757 |
+
|
758 |
+
|
759 |
+
if unmerge_chunk == 0:
|
760 |
+
out = out[:,:src_len,:]
|
761 |
+
else:
|
762 |
+
out = out[:,src_len:,:]
|
763 |
+
|
764 |
+
return out
|
765 |
+
|
766 |
+
ret_dict = {"unm_num": unm_idx.shape[1]}
|
767 |
+
return merge, unmerge, ret_dict
|