jadechoghari
commited on
Commit
•
a9b005e
1
Parent(s):
b8ac6f6
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,42 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
# VidToMe: Video Token Merging for Zero-Shot Video Editing
|
5 |
+
|
6 |
+
Edit videos instantly with just a prompt! 🎥
|
7 |
+
|
8 |
+
Diffusers Implementation of VidToMe is a diffusion-based pipeline for zero-shot video editing that enhances temporal consistency and reduces memory usage by merging self-attention tokens across video frames.
|
9 |
+
This approach allows for a harmonious video generation and editing without needing to fine-tune the model.
|
10 |
+
By aligning and compressing redundant tokens across frames, VidToMe ensures smooth transitions and coherent video output, improving over traditional video editing methods.
|
11 |
+
It follows by [this paper](https://arxiv.org/abs/2312.10656).
|
12 |
+
|
13 |
+
## Usage
|
14 |
+
|
15 |
+
```python
|
16 |
+
from diffusers import DiffusionPipeline
|
17 |
+
|
18 |
+
# load the pretrained model
|
19 |
+
pipeline = DiffusionPipeline.from_pretrained("jadechoghari/VidToMe", trust_remote_code=True, custom_pipeline="jadechoghari/VidToMe", sd_version="depth", device="cuda", float_precision="fp16")
|
20 |
+
|
21 |
+
# Edit a video with prompts
|
22 |
+
pipeline(
|
23 |
+
video_path="path/to/video.mp4",
|
24 |
+
video_prompt="A serene beach scene",
|
25 |
+
edit_prompt="Make the sunset more vibrant",
|
26 |
+
control_type="depth",
|
27 |
+
n_timesteps=50
|
28 |
+
)
|
29 |
+
```
|
30 |
+
|
31 |
+
## Applications:
|
32 |
+
- Zero-shot video editing for content creators
|
33 |
+
- Video transformation using natural language prompts
|
34 |
+
- Memory-optimized video generation for longer or complex sequences
|
35 |
+
|
36 |
+
**Model Authors:**
|
37 |
+
- Xirui Li
|
38 |
+
- Chao Ma
|
39 |
+
- Xiaokang Yang
|
40 |
+
- Ming-Hsuan Yang
|
41 |
+
|
42 |
+
For more check the [Github Repo](https://github.com/lixirui142/VidToMe).
|