jaesani commited on
Commit
7397767
·
verified ·
1 Parent(s): 7900bb0

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - mteb/sts12-sts
5
+ metrics:
6
+ - accuracy
7
+ base_model:
8
+ - sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
9
+ library_name: transformers
10
+ ---
11
+ Model Description
12
+ This model is a fine-tuned version of sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 for sentence similarity tasks. It was trained on the mteb/stsbenchmark-sts dataset to evaluate the similarity between sentence pairs.
13
+
14
+ Model Type: Sequence Classification (Regression)
15
+ Pre-trained Model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
16
+ Fine-Tuning Dataset: mteb/stsbenchmark-sts
17
+ Task: Sentence similarity (regression)
18
+ Training Details
19
+ Training Objective: To predict the similarity score between pairs of sentences.
20
+ Training Data: mteb/stsbenchmark-sts, which contains sentence pairs with similarity scores.
21
+ Number of Labels: 1 (regression)
22
+ Epochs: 2
23
+ Batch Size: 8
24
+ Learning Rate: 2e-5
25
+ Weight Decay: 0.01
26
+ Evaluation
27
+ The model was evaluated using Pearson correlation on the validation set of the mteb/stsbenchmark-sts dataset. Results indicate how well the model predicts similarity scores between sentence pairs.
28
+
29
+ Usage
30
+ To use this model for sentence similarity, follow these steps:
31
+
32
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
33
+
34
+ # Load the fine-tuned model
35
+
36
+
37
+ model = AutoModelForSequenceClassification.from_pretrained("./paraphraser_model")
38
+ tokenizer = AutoTokenizer.from_pretrained("./paraphraser_model")
39
+
40
+ sentences = ["The quick brown fox jumps over the lazy dog.", "A fast dark-colored fox leaps over a sleeping dog."]
41
+ encoded_input = tokenizer(sentences[0], sentences[1], return_tensors="pt", truncation=True, padding='max_length', max_length=128)
42
+
43
+ # Compute Similarity Score:
44
+
45
+ import torch
46
+ import torch.nn.functional as F
47
+
48
+ # Perform inference
49
+ with torch.no_grad():
50
+ model_output = model(**encoded_input)
51
+ logits = model_output.logits
52
+ similarity_score = F.sigmoid(logits).item()
53
+
54
+ print(f"Similarity score between the two sentences: {similarity_score}")
55
+
56
+ # Mean Pooling Function:
57
+
58
+ If using the model for generating sentence embeddings, you can use the following mean pooling function:
59
+ def mean_pooling(model_output, attention_mask):
60
+ token_embeddings = model_output[0] # First element of model_output contains the token embeddings
61
+ input_mask_expanded = attention_mask.unsqueeze(-1).float()
62
+ sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, dim=1)
63
+ sum_mask = torch.clamp(input_mask_expanded.sum(dim=1), min=1e-9)
64
+ return sum_embeddings / sum_mask
65
+
66
+ # Limitations
67
+ Domain Specificity: The model is fine-tuned on the mteb/stsbenchmark-sts dataset and may perform differently on other types of text or datasets.
68
+ Biases: As with any model trained on human language data, it may inherit and reflect biases present in the training data.
69
+
70
+ Future Work
71
+ Potential improvements include fine-tuning on additional datasets, experimenting with different architectures or hyperparameters, and incorporating additional training techniques to improve performance and robustness.
72
+
73
+ Citation
74
+ If you use this model in your research, please cite it as follows:
75
+ @inproceedings{your_paper,
76
+ title={Fine-Tuned Paraphrase-Multilingual-MiniLM-L12-v2 for Sentence Similarity},
77
+ author={Your Name},
78
+ year={2024},
79
+ publisher={Your Institution}
80
+ }
81
+
82
+
83
+ License
84
+ This model is licensed under the MIT License. See the LICENSE file for more information.