jakezou commited on
Commit
7e09d73
·
1 Parent(s): 11f594a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.23 +/- 0.13
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63f4db4848d42eb51ce1efa31db5ba13c3188822b5fbc814b50d16a6a1d06af0
3
+ size 106574
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7beb56bfc040>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7beb56beb6c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 800000,
23
+ "_total_timesteps": 800000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1691646227629138023,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3fegP2DaQj8rdkK/m/eevj5UnD/dvY+/L7RXPjfgyLxF2cU+L7RXPjfgyLxF2cU+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6Ke3P5r7yT7FnLm/29iDPWkLmz91Jo+/PPxLvkWLdL65Oci/uBWjvhfAfL8YH5Q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADd96A/YNpCPyt2Qr81S1A+sukXvoo00L+b956+PlScP929j7/oso2+0N9YP+8fm78vtFc+N+DIvEXZxT6S3uo+SBQDvCSTwj4vtFc+N+DIvEXZxT6S3uo+SBQDvCSTwj6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 1.2575642 0.76114464 -0.7596156 ]\n [-0.31048283 1.2213209 -1.1229817 ]\n [ 0.21064828 -0.02452098 0.38642326]\n [ 0.21064828 -0.02452098 0.38642326]]",
34
+ "desired_goal": "[[ 1.4348116 0.3944977 -1.4500967 ]\n [ 0.06437846 1.2112857 -1.1183611 ]\n [-0.19920439 -0.23881252 -1.5642616 ]\n [-0.31852508 -0.98730606 1.1571989 ]]",
35
+ "observation": "[[ 1.2575642 0.76114464 -0.7596156 0.20341189 -0.14835241 -1.6266034 ]\n [-0.31048283 1.2213209 -1.1229817 -0.27675557 0.8471651 -1.211912 ]\n [ 0.21064828 -0.02452098 0.38642326 0.45872933 -0.00800044 0.38002884]\n [ 0.21064828 -0.02452098 0.38642326 0.45872933 -0.00800044 0.38002884]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYYqDvS8auzyj1Uk+Z5EYvp7mcD36xEE+nn21PZbmn71sZiw+8V70vf2cLDxaEKA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.06422878 0.02283963 0.19710402]\n [-0.14899217 0.05881368 0.18922797]\n [ 0.0886185 -0.07807653 0.16835946]\n [-0.11932171 0.01053548 0.07815619]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8fqqwQlKK6MAWyUSwOMAXSUR0ClhUfZElVtdX2UKGgGR7+0pazNUwSKaAdLAmgIR0ClhrrR0EHMdX2UKGgGR7/MGj9GZuyeaAdLA2gIR0ClhlCQcPvsdX2UKGgGR7+5pZfUnXumaAdLAmgIR0Clhs7ROUMYdX2UKGgGR7+7XWe6I3zdaAdLAmgIR0ClhmSlenhsdX2UKGgGR7/R/ub7TDwZaAdLBGgIR0ClhfJpWV/udX2UKGgGR7/SuUD+zdDZaAdLBGgIR0ClhW3XZoPDdX2UKGgGR7+jamGdqcmTaAdLAWgIR0ClhXXOGCZndX2UKGgGR7/MKziS7oStaAdLA2gIR0ClhufiYLLIdX2UKGgGR7/JQP7N0NjLaAdLA2gIR0Clhn2iUPhAdX2UKGgGR7/TUi6g/TsqaAdLA2gIR0ClhguH31zydX2UKGgGR7+4qx1PnB+GaAdLAmgIR0ClhYZa/yoXdX2UKGgGR7/OoMKCxu89aAdLA2gIR0ClhwHS4OMEdX2UKGgGR7/UdPLxI8QqaAdLA2gIR0Clhpd+gDigdX2UKGgGR7/RY/FBIFvAaAdLA2gIR0ClhaBuXNTtdX2UKGgGR7/W/S6UaAFxaAdLBGgIR0Clhi5M10kodX2UKGgGR7/FG0eEIw/QaAdLA2gIR0Clhxs+3YthdX2UKGgGR7/SrHEMspXqaAdLA2gIR0ClhrDgQ6IWdX2UKGgGR7/MxeLNwBHTaAdLA2gIR0ClhbmdZq20dX2UKGgGR7/FQEZBLPD6aAdLA2gIR0Clhkou5BkadX2UKGgGR7/PVAiV0Lc9aAdLA2gIR0ClhzcS5AhTdX2UKGgGR7/Jj0cwQDmsaAdLA2gIR0ClhszJ6po9dX2UKGgGR7/QYgJTl1bJaAdLA2gIR0ClhdWeYlY2dX2UKGgGR7/IVMVUMoc8aAdLA2gIR0ClhmMq8UVSdX2UKGgGR7+jdDYywfQsaAdLAWgIR0ClhmxL9MsZdX2UKGgGR7/LtaY/mknDaAdLA2gIR0Clh1UPYnOTdX2UKGgGR7/PLpzLfUF0aAdLA2gIR0ClhfNoSL62dX2UKGgGR7/T8E3bVSXMaAdLBGgIR0ClhvLhBJI2dX2UKGgGR7/Aow22oegdaAdLAmgIR0Clh2WNvOyFdX2UKGgGR7/NuVHFxXGPaAdLA2gIR0ClhoinP3SKdX2UKGgGR7/KfwI+nqFAaAdLA2gIR0Clhgtg8bJfdX2UKGgGR7/CACnxaxHHaAdLAmgIR0Clh3W/i5uqdX2UKGgGR7/B7Q9ic5KfaAdLAmgIR0Clhpj1XeWOdX2UKGgGR7/YKf4AS39aaAdLBGgIR0ClhxgLZzxPdX2UKGgGR7/IDA8B+4LDaAdLA2gIR0ClhiiAUcn3dX2UKGgGR7/LD6WPcSGraAdLA2gIR0Clh5LKNhmYdX2UKGgGR7+5PSDyvs7daAdLAmgIR0Clhyh0ZFXrdX2UKGgGR7/JzltCRfWuaAdLA2gIR0ClhrZBC2MLdX2UKGgGR7+2BOHnEETyaAdLAmgIR0ClhjwgDA8CdX2UKGgGR7+yXa8Hv+fiaAdLAmgIR0Clh6fG+9J0dX2UKGgGR7/B876pHZsbaAdLAmgIR0Clhz1yvLX+dX2UKGgGR7/RT2WY4Qz2aAdLA2gIR0Clhtc9wFTvdX2UKGgGR7+sbR4QjD8+aAdLAmgIR0Clh7ydWhh6dX2UKGgGR7+zKB/ZuhsZaAdLAmgIR0Clh1JGvwEydX2UKGgGR7/OjrzGxUvPaAdLA2gIR0Clhlsh5gPVdX2UKGgGR7+mpqASWZ7YaAdLAWgIR0Clh1radtl7dX2UKGgGR7+4L6UJOWSmaAdLAmgIR0Clh80tZmqYdX2UKGgGR7/RZZ0Syt3faAdLA2gIR0ClhvAp8WsSdX2UKGgGR7+3rX18LKFJaAdLAmgIR0Clh2viT+vRdX2UKGgGR7/R6guh9LHuaAdLA2gIR0ClhnSB9TgmdX2UKGgGR7/NPX05EMLGaAdLA2gIR0Clh+o7/4qPdX2UKGgGR7/FiDujRD1HaAdLAmgIR0ClhootlI3BdX2UKGgGR7/P8yeqaPS2aAdLA2gIR0Clh4pXyRSxdX2UKGgGR7/UwdbPhQ3xaAdLBGgIR0ClhxgYYR/WdX2UKGgGR7+8C+10DEFXaAdLAmgIR0Clh5mLLpzLdX2UKGgGR7/PA1NxlxwRaAdLBGgIR0CliBBJI1+BdX2UKGgGR7/Qf8MuvlltaAdLA2gIR0ClhzN/e+EidX2UKGgGR7/UEb5uZThpaAdLBGgIR0Clhq7CzkZKdX2UKGgGR7++/BWPtD2KaAdLAmgIR0Clh66MrEtNdX2UKGgGR7+nN7jT8YQ8aAdLAWgIR0ClhzwoTfzjdX2UKGgGR7+hSBK+SKWLaAdLAWgIR0Clh0Rx95QhdX2UKGgGR7/KYtxuKoAGaAdLA2gIR0CliCm1YyO8dX2UKGgGR7/QQRf4REncaAdLA2gIR0ClhsgqEvkBdX2UKGgGR7+/XarWAf+1aAdLAmgIR0Clh1U0Nz8xdX2UKGgGR7+4R6F/QSi/aAdLAmgIR0CliD3LNfPYdX2UKGgGR7/cY3Ns3yZsaAdLBGgIR0Clh9QaR6njdX2UKGgGR7+6ohpxm03PaAdLAmgIR0Clht0vGp++dX2UKGgGR7/O5ggHNX5naAdLA2gIR0Clh3QHqu8sdX2UKGgGR7+34rSVnmJWaAdLAmgIR0Clhu9sJpnIdX2UKGgGR7/McS5AhStOaAdLA2gIR0Clh+8lPacqdX2UKGgGR7/f/20zCUHIaAdLBGgIR0CliGGYa5wwdX2UKGgGR7+ic/dIoVmBaAdLAWgIR0Clh/c9Oh0ydX2UKGgGR7/UO5J9RaX8aAdLA2gIR0Clh494/u9fdX2UKGgGR7/I+8oQWepXaAdLA2gIR0ClhwrQgLZ0dX2UKGgGR7/NopQUHpr2aAdLA2gIR0CliH1AzHjqdX2UKGgGR7/UM5OrQw9JaAdLA2gIR0CliBLyMDOkdX2UKGgGR7++f29L6DXfaAdLAmgIR0ClhxuQQtjDdX2UKGgGR7/Jk078vVVhaAdLA2gIR0Clh6hp5/smdX2UKGgGR7/Tq20AtFrmaAdLA2gIR0CliJjBEa2ndX2UKGgGR7/G+GoJiRW+aAdLA2gIR0CliC6Xrt3OdX2UKGgGR7+35gw482aVaAdLAmgIR0Clh7xoysS1dX2UKGgGR7/RFAE+xGDuaAdLA2gIR0Clhzfra/RFdX2UKGgGR7+7ZamoBJZoaAdLAmgIR0Clh0dUCJXRdX2UKGgGR7/PTjNpudf+aAdLA2gIR0CliEgDq4YrdX2UKGgGR7/S7EYO2AoYaAdLA2gIR0Clh9XS0BwNdX2UKGgGR7/gZAyEcsDoaAdLBmgIR0CliM+gctGvdX2UKGgGR7/I2AoXsPataAdLA2gIR0Clh/KiXY16dX2UKGgGR7/YBjFyaNMoaAdLBGgIR0Clh233Hq/udX2UKGgGR7/cv1DjR2KVaAdLBGgIR0CliG2TX8O1dX2UKGgGR7+1VuJk5IYnaAdLAmgIR0CliAMAFPi2dX2UKGgGR7/GXiR4hUzbaAdLA2gIR0CliOhJyyUtdX2UKGgGR7/J4JNTLns+aAdLA2gIR0Clh4Y+bExZdX2UKGgGR7/MC8vmHP/raAdLA2gIR0CliIkpy6tldX2UKGgGR7/Q9MsYl6Z6aAdLA2gIR0CliB6o2n89dX2UKGgGR7+3ShJyyUs4aAdLAmgIR0Clh5oKc/dJdX2UKGgGR7/I77sOXmeUaAdLA2gIR0CliQRxT850dX2UKGgGR7/Fcu8K5TZQaAdLAmgIR0CliJoEKVpsdX2UKGgGR7/AOEug6EJ0aAdLAmgIR0Clh6phF3INdX2UKGgGR7/SD15B1LamaAdLA2gIR0CliDdS2phndX2UKGgGR7+kyvcJtzjnaAdLAWgIR0Clh7NLteD4dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 40000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0a8128ce4682e068e4bb57473bc9fb1afda6ec497f011d98fd5ed5eec9b16d9
3
+ size 44606
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c717b21e73cef0ce47923563ebf61a5ce406fa2bf589256a61e6c23523253a4e
3
+ size 45886
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7beb56bfc040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7beb56beb6c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 800000, "_total_timesteps": 800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691646227629138023, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3fegP2DaQj8rdkK/m/eevj5UnD/dvY+/L7RXPjfgyLxF2cU+L7RXPjfgyLxF2cU+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6Ke3P5r7yT7FnLm/29iDPWkLmz91Jo+/PPxLvkWLdL65Oci/uBWjvhfAfL8YH5Q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADd96A/YNpCPyt2Qr81S1A+sukXvoo00L+b956+PlScP929j7/oso2+0N9YP+8fm78vtFc+N+DIvEXZxT6S3uo+SBQDvCSTwj4vtFc+N+DIvEXZxT6S3uo+SBQDvCSTwj6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.2575642 0.76114464 -0.7596156 ]\n [-0.31048283 1.2213209 -1.1229817 ]\n [ 0.21064828 -0.02452098 0.38642326]\n [ 0.21064828 -0.02452098 0.38642326]]", "desired_goal": "[[ 1.4348116 0.3944977 -1.4500967 ]\n [ 0.06437846 1.2112857 -1.1183611 ]\n [-0.19920439 -0.23881252 -1.5642616 ]\n [-0.31852508 -0.98730606 1.1571989 ]]", "observation": "[[ 1.2575642 0.76114464 -0.7596156 0.20341189 -0.14835241 -1.6266034 ]\n [-0.31048283 1.2213209 -1.1229817 -0.27675557 0.8471651 -1.211912 ]\n [ 0.21064828 -0.02452098 0.38642326 0.45872933 -0.00800044 0.38002884]\n [ 0.21064828 -0.02452098 0.38642326 0.45872933 -0.00800044 0.38002884]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYYqDvS8auzyj1Uk+Z5EYvp7mcD36xEE+nn21PZbmn71sZiw+8V70vf2cLDxaEKA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06422878 0.02283963 0.19710402]\n [-0.14899217 0.05881368 0.18922797]\n [ 0.0886185 -0.07807653 0.16835946]\n [-0.11932171 0.01053548 0.07815619]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8fqqwQlKK6MAWyUSwOMAXSUR0ClhUfZElVtdX2UKGgGR7+0pazNUwSKaAdLAmgIR0ClhrrR0EHMdX2UKGgGR7/MGj9GZuyeaAdLA2gIR0ClhlCQcPvsdX2UKGgGR7+5pZfUnXumaAdLAmgIR0Clhs7ROUMYdX2UKGgGR7+7XWe6I3zdaAdLAmgIR0ClhmSlenhsdX2UKGgGR7/R/ub7TDwZaAdLBGgIR0ClhfJpWV/udX2UKGgGR7/SuUD+zdDZaAdLBGgIR0ClhW3XZoPDdX2UKGgGR7+jamGdqcmTaAdLAWgIR0ClhXXOGCZndX2UKGgGR7/MKziS7oStaAdLA2gIR0ClhufiYLLIdX2UKGgGR7/JQP7N0NjLaAdLA2gIR0Clhn2iUPhAdX2UKGgGR7/TUi6g/TsqaAdLA2gIR0ClhguH31zydX2UKGgGR7+4qx1PnB+GaAdLAmgIR0ClhYZa/yoXdX2UKGgGR7/OoMKCxu89aAdLA2gIR0ClhwHS4OMEdX2UKGgGR7/UdPLxI8QqaAdLA2gIR0Clhpd+gDigdX2UKGgGR7/RY/FBIFvAaAdLA2gIR0ClhaBuXNTtdX2UKGgGR7/W/S6UaAFxaAdLBGgIR0Clhi5M10kodX2UKGgGR7/FG0eEIw/QaAdLA2gIR0Clhxs+3YthdX2UKGgGR7/SrHEMspXqaAdLA2gIR0ClhrDgQ6IWdX2UKGgGR7/MxeLNwBHTaAdLA2gIR0ClhbmdZq20dX2UKGgGR7/FQEZBLPD6aAdLA2gIR0Clhkou5BkadX2UKGgGR7/PVAiV0Lc9aAdLA2gIR0ClhzcS5AhTdX2UKGgGR7/Jj0cwQDmsaAdLA2gIR0ClhszJ6po9dX2UKGgGR7/QYgJTl1bJaAdLA2gIR0ClhdWeYlY2dX2UKGgGR7/IVMVUMoc8aAdLA2gIR0ClhmMq8UVSdX2UKGgGR7+jdDYywfQsaAdLAWgIR0ClhmxL9MsZdX2UKGgGR7/LtaY/mknDaAdLA2gIR0Clh1UPYnOTdX2UKGgGR7/PLpzLfUF0aAdLA2gIR0ClhfNoSL62dX2UKGgGR7/T8E3bVSXMaAdLBGgIR0ClhvLhBJI2dX2UKGgGR7/Aow22oegdaAdLAmgIR0Clh2WNvOyFdX2UKGgGR7/NuVHFxXGPaAdLA2gIR0ClhoinP3SKdX2UKGgGR7/KfwI+nqFAaAdLA2gIR0Clhgtg8bJfdX2UKGgGR7/CACnxaxHHaAdLAmgIR0Clh3W/i5uqdX2UKGgGR7/B7Q9ic5KfaAdLAmgIR0Clhpj1XeWOdX2UKGgGR7/YKf4AS39aaAdLBGgIR0ClhxgLZzxPdX2UKGgGR7/IDA8B+4LDaAdLA2gIR0ClhiiAUcn3dX2UKGgGR7/LD6WPcSGraAdLA2gIR0Clh5LKNhmYdX2UKGgGR7+5PSDyvs7daAdLAmgIR0Clhyh0ZFXrdX2UKGgGR7/JzltCRfWuaAdLA2gIR0ClhrZBC2MLdX2UKGgGR7+2BOHnEETyaAdLAmgIR0ClhjwgDA8CdX2UKGgGR7+yXa8Hv+fiaAdLAmgIR0Clh6fG+9J0dX2UKGgGR7/B876pHZsbaAdLAmgIR0Clhz1yvLX+dX2UKGgGR7/RT2WY4Qz2aAdLA2gIR0Clhtc9wFTvdX2UKGgGR7+sbR4QjD8+aAdLAmgIR0Clh7ydWhh6dX2UKGgGR7+zKB/ZuhsZaAdLAmgIR0Clh1JGvwEydX2UKGgGR7/OjrzGxUvPaAdLA2gIR0Clhlsh5gPVdX2UKGgGR7+mpqASWZ7YaAdLAWgIR0Clh1radtl7dX2UKGgGR7+4L6UJOWSmaAdLAmgIR0Clh80tZmqYdX2UKGgGR7/RZZ0Syt3faAdLA2gIR0ClhvAp8WsSdX2UKGgGR7+3rX18LKFJaAdLAmgIR0Clh2viT+vRdX2UKGgGR7/R6guh9LHuaAdLA2gIR0ClhnSB9TgmdX2UKGgGR7/NPX05EMLGaAdLA2gIR0Clh+o7/4qPdX2UKGgGR7/FiDujRD1HaAdLAmgIR0ClhootlI3BdX2UKGgGR7/P8yeqaPS2aAdLA2gIR0Clh4pXyRSxdX2UKGgGR7/UwdbPhQ3xaAdLBGgIR0ClhxgYYR/WdX2UKGgGR7+8C+10DEFXaAdLAmgIR0Clh5mLLpzLdX2UKGgGR7/PA1NxlxwRaAdLBGgIR0CliBBJI1+BdX2UKGgGR7/Qf8MuvlltaAdLA2gIR0ClhzN/e+EidX2UKGgGR7/UEb5uZThpaAdLBGgIR0Clhq7CzkZKdX2UKGgGR7++/BWPtD2KaAdLAmgIR0Clh66MrEtNdX2UKGgGR7+nN7jT8YQ8aAdLAWgIR0ClhzwoTfzjdX2UKGgGR7+hSBK+SKWLaAdLAWgIR0Clh0Rx95QhdX2UKGgGR7/KYtxuKoAGaAdLA2gIR0CliCm1YyO8dX2UKGgGR7/QQRf4REncaAdLA2gIR0ClhsgqEvkBdX2UKGgGR7+/XarWAf+1aAdLAmgIR0Clh1U0Nz8xdX2UKGgGR7+4R6F/QSi/aAdLAmgIR0CliD3LNfPYdX2UKGgGR7/cY3Ns3yZsaAdLBGgIR0Clh9QaR6njdX2UKGgGR7+6ohpxm03PaAdLAmgIR0Clht0vGp++dX2UKGgGR7/O5ggHNX5naAdLA2gIR0Clh3QHqu8sdX2UKGgGR7+34rSVnmJWaAdLAmgIR0Clhu9sJpnIdX2UKGgGR7/McS5AhStOaAdLA2gIR0Clh+8lPacqdX2UKGgGR7/f/20zCUHIaAdLBGgIR0CliGGYa5wwdX2UKGgGR7+ic/dIoVmBaAdLAWgIR0Clh/c9Oh0ydX2UKGgGR7/UO5J9RaX8aAdLA2gIR0Clh494/u9fdX2UKGgGR7/I+8oQWepXaAdLA2gIR0ClhwrQgLZ0dX2UKGgGR7/NopQUHpr2aAdLA2gIR0CliH1AzHjqdX2UKGgGR7/UM5OrQw9JaAdLA2gIR0CliBLyMDOkdX2UKGgGR7++f29L6DXfaAdLAmgIR0ClhxuQQtjDdX2UKGgGR7/Jk078vVVhaAdLA2gIR0Clh6hp5/smdX2UKGgGR7/Tq20AtFrmaAdLA2gIR0CliJjBEa2ndX2UKGgGR7/G+GoJiRW+aAdLA2gIR0CliC6Xrt3OdX2UKGgGR7+35gw482aVaAdLAmgIR0Clh7xoysS1dX2UKGgGR7/RFAE+xGDuaAdLA2gIR0Clhzfra/RFdX2UKGgGR7+7ZamoBJZoaAdLAmgIR0Clh0dUCJXRdX2UKGgGR7/PTjNpudf+aAdLA2gIR0CliEgDq4YrdX2UKGgGR7/S7EYO2AoYaAdLA2gIR0Clh9XS0BwNdX2UKGgGR7/gZAyEcsDoaAdLBmgIR0CliM+gctGvdX2UKGgGR7/I2AoXsPataAdLA2gIR0Clh/KiXY16dX2UKGgGR7/YBjFyaNMoaAdLBGgIR0Clh233Hq/udX2UKGgGR7/cv1DjR2KVaAdLBGgIR0CliG2TX8O1dX2UKGgGR7+1VuJk5IYnaAdLAmgIR0CliAMAFPi2dX2UKGgGR7/GXiR4hUzbaAdLA2gIR0CliOhJyyUtdX2UKGgGR7/J4JNTLns+aAdLA2gIR0Clh4Y+bExZdX2UKGgGR7/MC8vmHP/raAdLA2gIR0CliIkpy6tldX2UKGgGR7/Q9MsYl6Z6aAdLA2gIR0CliB6o2n89dX2UKGgGR7+3ShJyyUs4aAdLAmgIR0Clh5oKc/dJdX2UKGgGR7/I77sOXmeUaAdLA2gIR0CliQRxT850dX2UKGgGR7/Fcu8K5TZQaAdLAmgIR0CliJoEKVpsdX2UKGgGR7/AOEug6EJ0aAdLAmgIR0Clh6phF3INdX2UKGgGR7/SD15B1LamaAdLA2gIR0CliDdS2phndX2UKGgGR7+kyvcJtzjnaAdLAWgIR0Clh7NLteD4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (697 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.23417527247220277, "std_reward": 0.1306529621655358, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-10T06:31:18.266091"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaefe7ed4ca31b44ad12d22b61bfe1066d0c624dcd281fe32710f795aa73167d
3
+ size 2623