ppo-LunarLander-v2 / config.json
jakka's picture
pushed to hub
0a3642f
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc9a4e67a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc9a4e6830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc9a4e68c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc9a4e6950>", "_build": "<function ActorCriticPolicy._build at 0x7fdc9a4e69e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fdc9a4e6a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc9a4e6b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdc9a4e6b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc9a4e6c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc9a4e6cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc9a4e6d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdc9a520e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1657656474.6823215, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzajLPOFa1biQmji7QKIONje9iLqGflg6AACAPwAAgD9mRgc7jy5Oumivj7spoZy1N5SAusLqCjUAAIA/AACAP2M8aL49ykY42RmQuh+LuTZWTBe8aSSjOQAAgD8AAIA/M6CqPPbsXrpgo3Y5+ppTNlaU4Tn7woy4AACAPwAAgD/mplM9KWw1uikwtDoA9tM1d9gtO1DMz7kAAIA/AACAP/MnZD5X9Rg/Nvqbvc1b7b2Vxka9Uy1bvQAAAAAAAAAAhqgsPk+3FLzDSdG7qxruOU6Bdb1PMcU6AACAPwAAgD+mGoG+Bf3+PPuZibo151w5WsCNvvilzDkAAIA/AACAP9bNlb6+pxo/LorjPWelY76aEOG7HuwDPgAAAAAAAAAATUSSPR/lxDggffc5VXeavCcWObvgtHc8AAAAAAAAAABNjm690j6vuxPkpTznE5Y89y8Qva0Cfj0AAIA/AACAPxrUQD1c61C6CjWfu69JU7b9bxq6khW8NQAAgD8AAIA/bpiUvtOaYj98czu+lbihvg4SMr44kbU9AAAAAAAAAAB6TiU+FZjnPuxnl71VNHy+mm3UvGgusTwAAAAAAAAAALPMrj3D5TA5puSMu5PBOLV3u5S7SNOsNAAAgD8AAIA/jXLqPSnwX7rUAcM69QSGNtfJVroYPea5AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+3Q8ZqBMSECUhpRSlIwBbJRN6AOMAXSUR0CFNxY4ACGOdX2UKGgGaAloD0MIL4fddwywUECUhpRSlGgVTegDaBZHQIVPwZMtbs51fZQoaAZoCWgPQwhIwOjy5nAoQJSGlFKUaBVNUgFoFkdAhVDIlD4QBnV9lChoBmgJaA9DCONw5ldzgGFAlIaUUpRoFU3oA2gWR0CFXhpGnXNDdX2UKGgGaAloD0MI6INlbOhSV0CUhpRSlGgVTegDaBZHQIVn+fqX4TN1fZQoaAZoCWgPQwhpHVVNEHZcQJSGlFKUaBVN6ANoFkdAhXvbYK6WgXV9lChoBmgJaA9DCJ+OxwxUL1NAlIaUUpRoFU3oA2gWR0CFfZxIatLddX2UKGgGaAloD0MIPkFiu3t8SkCUhpRSlGgVTegDaBZHQIV+NaW5Yo11fZQoaAZoCWgPQwhnf6DcttpfQJSGlFKUaBVN6ANoFkdAhX76Hj6vaHV9lChoBmgJaA9DCPYoXI/C5SZAlIaUUpRoFU00AWgWR0CFgnGgi/widX2UKGgGaAloD0MIbuAO1Cm1VkCUhpRSlGgVTegDaBZHQIWw22TgVGl1fZQoaAZoCWgPQwgDB7R0BXNhQJSGlFKUaBVN6ANoFkdAhbLyHEdeY3V9lChoBmgJaA9DCKBvC5bqnlZAlIaUUpRoFU3oA2gWR0CFtNL5hz/7dX2UKGgGaAloD0MIyzDuBtGkXkCUhpRSlGgVTegDaBZHQIXNC1G9YfZ1fZQoaAZoCWgPQwh0le6usxddQJSGlFKUaBVN6ANoFkdAhc64/eLvTnV9lChoBmgJaA9DCJ/HKM88H2FAlIaUUpRoFU3oA2gWR0CFzwBo24usdX2UKGgGaAloD0MILliqC3j6WUCUhpRSlGgVTegDaBZHQIXeotSQ5m11fZQoaAZoCWgPQwjxftx++X1ZQJSGlFKUaBVN6ANoFkdAhffg2AG0NXV9lChoBmgJaA9DCO2d0VYlERTAlIaUUpRoFU0cAWgWR0CF+sx5cC5mdX2UKGgGaAloD0MIxohEoWUFNkCUhpRSlGgVS+RoFkdAhgN81fmcOXV9lChoBmgJaA9DCOIftvRo51tAlIaUUpRoFU3oA2gWR0CGEPXgccU/dX2UKGgGaAloD0MIELOXbafxS0CUhpRSlGgVTegDaBZHQIYdItBfKIV1fZQoaAZoCWgPQwhRTUnW4ddiQJSGlFKUaBVN6ANoFkdAhiX/FBIFvHV9lChoBmgJaA9DCKeufJbnwVhAlIaUUpRoFU3oA2gWR0CGOZF6Rhc8dX2UKGgGaAloD0MIAFMGDmjgX0CUhpRSlGgVTegDaBZHQIY7WJ79hql1fZQoaAZoCWgPQwiXcVMDTQVhQJSGlFKUaBVN6ANoFkdAhjvwA+6iCnV9lChoBmgJaA9DCNqNPuYDJl5AlIaUUpRoFU3oA2gWR0CGPKUEgW8AdX2UKGgGaAloD0MIpbxWQnfwX0CUhpRSlGgVTegDaBZHQIZAFR+BpYd1fZQoaAZoCWgPQwjScwtdiV5kQJSGlFKUaBVN6ANoFkdAhkZtVR1ox3V9lChoBmgJaA9DCNCzWfW58FlAlIaUUpRoFU3oA2gWR0CGcI052hZhdX2UKGgGaAloD0MIMgBUceP6UUCUhpRSlGgVTegDaBZHQIZyTdtVJcx1fZQoaAZoCWgPQwjlRSbg1/5eQJSGlFKUaBVN6ANoFkdAhoyn8TBZZHV9lChoBmgJaA9DCAg6WtWSr19AlIaUUpRoFU3oA2gWR0CGjxlp48lpdX2UKGgGaAloD0MIHqfoSC5cXECUhpRSlGgVTegDaBZHQIa9iGrS3LF1fZQoaAZoCWgPQwhat0Htt89iQJSGlFKUaBVN6ANoFkdAhsCuXVsk6nV9lChoBmgJaA9DCAnDgCVX9T1AlIaUUpRoFU3oA2gWR0CGyknYxtYTdX2UKGgGaAloD0MIXyaKkLobYECUhpRSlGgVTegDaBZHQIbYs6NlyzZ1fZQoaAZoCWgPQwiWJqWg28ldQJSGlFKUaBVN6ANoFkdAhuYareZXuHV9lChoBmgJaA9DCAVu3c3Tf2RAlIaUUpRoFU3oA2gWR0CG79Tz/ZM+dX2UKGgGaAloD0MI9yFvufpJXkCUhpRSlGgVTegDaBZHQIcEl9fCyhV1fZQoaAZoCWgPQwjSqMDJNmFeQJSGlFKUaBVN6ANoFkdAhwZxNh3JP3V9lChoBmgJaA9DCOlDF9S34GRAlIaUUpRoFU3oA2gWR0CHBw2hqTKUdX2UKGgGaAloD0MI1QloImzeW0CUhpRSlGgVTegDaBZHQIcHzpRoAXF1fZQoaAZoCWgPQwgmOWBXk+RVQJSGlFKUaBVN6ANoFkdAhwtmois4k3V9lChoBmgJaA9DCJ7TLNDu21xAlIaUUpRoFU3oA2gWR0CHEaGB4D9wdX2UKGgGaAloD0MIHy3OGObYWECUhpRSlGgVTegDaBZHQIcT6YRdyDJ1fZQoaAZoCWgPQwgiMxe4vJxiQJSGlFKUaBVN6ANoFkdAhz01GCqZMXV9lChoBmgJaA9DCBBB1ejVUBdAlIaUUpRoFU1IAWgWR0CHRyeCCjDbdX2UKGgGaAloD0MIqdpugm/GMMCUhpRSlGgVTSYBaBZHQIdTZ/ustCl1fZQoaAZoCWgPQwjL9iFvuW1hQJSGlFKUaBVN6ANoFkdAh1VOjZcs2HV9lChoBmgJaA9DCJih8UQQ+V1AlIaUUpRoFU3oA2gWR0CHVwfJV81GdX2UKGgGaAloD0MIAb7bvHHS47+UhpRSlGgVTUgBaBZHQIdaNT987ZF1fZQoaAZoCWgPQwjA6V28H4lWQJSGlFKUaBVN6ANoFkdAh36cM3IdVHV9lChoBmgJaA9DCKX1twTgXl9AlIaUUpRoFU3oA2gWR0CHgXXQtz0ZdX2UKGgGaAloD0MIZrtCHyxjU0CUhpRSlGgVTegDaBZHQIeJUSuhbnp1fZQoaAZoCWgPQwjyI37FGrpbQJSGlFKUaBVN6ANoFkdAh5VQYcebNXV9lChoBmgJaA9DCBtLWBtj1VNAlIaUUpRoFU3oA2gWR0CHoGBNEgGKdX2UKGgGaAloD0MIz4O7s3abGECUhpRSlGgVTTgBaBZHQIeqrFMqSYB1fZQoaAZoCWgPQwgVi98U1ktgQJSGlFKUaBVN6ANoFkdAh7p6H0se4nV9lChoBmgJaA9DCGtkV1pGtltAlIaUUpRoFU3oA2gWR0CHu8yTINmUdX2UKGgGaAloD0MIRfKVQMqGYECUhpRSlGgVTegDaBZHQIe/ZQk5ZKZ1fZQoaAZoCWgPQwgGKuPfZxZVQJSGlFKUaBVN6ANoFkdAh8W9jwx33nV9lChoBmgJaA9DCHhBRGrav1lAlIaUUpRoFU3oA2gWR0CHx/WI42jxdX2UKGgGaAloD0MIuf5dnzndR0CUhpRSlGgVTegDaBZHQIfJ3pKSPlx1fZQoaAZoCWgPQwhj8ZvCSvJiQJSGlFKUaBVN6ANoFkdAh/s3Wvr4WXV9lChoBmgJaA9DCEDAWrVrtk5AlIaUUpRoFU3oA2gWR0CIBi2RaHKwdX2UKGgGaAloD0MI2gJC6+HnXkCUhpRSlGgVTegDaBZHQIgH4+hXbM51fZQoaAZoCWgPQwhpp+ZyA9liQJSGlFKUaBVN6ANoFkdAiAljQzDXOHV9lChoBmgJaA9DCAE0Spd+aWJAlIaUUpRoFU3oA2gWR0CIDEm3vx6OdX2UKGgGaAloD0MIGTigpStYLECUhpRSlGgVTREBaBZHQIgO/FaSs8x1fZQoaAZoCWgPQwiH3Aw34DsowJSGlFKUaBVNBQFoFkdAiBE1bJOnEXV9lChoBmgJaA9DCIXSF0LOkUpAlIaUUpRoFUvhaBZHQIgi7fBN21V1fZQoaAZoCWgPQwiq0hbX+NpQQJSGlFKUaBVLzWgWR0CIKB1AZ88cdX2UKGgGaAloD0MISMX/HdE2YkCUhpRSlGgVTegDaBZHQIgsx4bCJoF1fZQoaAZoCWgPQwi2R2+4j8wqwJSGlFKUaBVNDQFoFkdAiC3N3GGVRnV9lChoBmgJaA9DCALXFTPCKFVAlIaUUpRoFU3oA2gWR0CIM/N7BwdbdX2UKGgGaAloD0MINzP60fCbYkCUhpRSlGgVTegDaBZHQIg+3nr6ciJ1fZQoaAZoCWgPQwi0HykiwyZiQJSGlFKUaBVN6ANoFkdAiElwf6oES3V9lChoBmgJaA9DCP28qUiFq2VAlIaUUpRoFU3oA2gWR0CIU6dMj/uLdX2UKGgGaAloD0MITG9/LhoTZkCUhpRSlGgVTegDaBZHQIhju1pj+aV1fZQoaAZoCWgPQwg+Xd2xWAVgQJSGlFKUaBVN6ANoFkdAiGUADRtxdnV9lChoBmgJaA9DCN50yw5xNGFAlIaUUpRoFU3oA2gWR0CIaDLJ0W/KdX2UKGgGaAloD0MIXvWAecgrYkCUhpRSlGgVTegDaBZHQIhwEVN5+ph1fZQoaAZoCWgPQwhUGjGzz71hQJSGlFKUaBVN6ANoFkdAiKMhsyi22HV9lChoBmgJaA9DCPpjWpvGT11AlIaUUpRoFU3oA2gWR0CIroF4cFQmdX2UKGgGaAloD0MIX5Z2ai59YUCUhpRSlGgVTegDaBZHQIixzg62fCh1fZQoaAZoCWgPQwhYWdsUD7pkQJSGlFKUaBVN6ANoFkdAiLpZLqUu+XV9lChoBmgJaA9DCJPGaB1Vv2FAlIaUUpRoFU3oA2gWR0CIzvrl/6O6dX2UKGgGaAloD0MI9mG9UavlYkCUhpRSlGgVTegDaBZHQIjU4ZTAFgV1fZQoaAZoCWgPQwgX8DLDRiZgQJSGlFKUaBVN6ANoFkdAiNmdECvHLnV9lChoBmgJaA9DCBdhinLpw2NAlIaUUpRoFU3oA2gWR0CI2p4pMHrydX2UKGgGaAloD0MIXmVtU7zrYkCUhpRSlGgVTegDaBZHQIjgwsAeaKF1fZQoaAZoCWgPQwjwF7Mlq9phQJSGlFKUaBVN6ANoFkdAiOvvdl/YrnV9lChoBmgJaA9DCFWmmIOgkzVAlIaUUpRoFUv3aBZHQIj1+nCO3lV1fZQoaAZoCWgPQwjaqbncYOtlQJSGlFKUaBVN6ANoFkdAiPaCzsyBTXV9lChoBmgJaA9DCNjV5Ckr72FAlIaUUpRoFU3oA2gWR0CJAP5UtI07dX2UKGgGaAloD0MItJHrppQDXUCUhpRSlGgVTegDaBZHQIkRAnpjc211fZQoaAZoCWgPQwhPAptz8JldQJSGlFKUaBVN6ANoFkdAiRJF6Rhc7nV9lChoBmgJaA9DCM+hDFWxzWBAlIaUUpRoFU3oA2gWR0CJFc4ecQRPdX2UKGgGaAloD0MIpYP1fw7TYUCUhpRSlGgVTegDaBZHQIkegBo24ut1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}