--- license: mit base_model: indobenchmark/indobert-large-p2 tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: indonli-indobert-large results: [] --- # indonli-indobert-large This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9753 - Accuracy: 0.6350 - Precision: 0.6350 - Recall: 0.6350 - F1 Score: 0.6362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 1.0324 | 1.0 | 2583 | 0.9492 | 0.5508 | 0.5508 | 0.5508 | 0.5172 | | 0.9234 | 2.0 | 5166 | 0.8837 | 0.6099 | 0.6099 | 0.6099 | 0.6106 | | 0.8318 | 3.0 | 7749 | 0.8718 | 0.6277 | 0.6277 | 0.6277 | 0.6302 | | 0.7417 | 4.0 | 10332 | 0.9005 | 0.6313 | 0.6313 | 0.6313 | 0.6326 | | 0.6788 | 5.0 | 12915 | 0.9380 | 0.6368 | 0.6368 | 0.6368 | 0.6381 | | 0.6263 | 6.0 | 15498 | 0.9753 | 0.6350 | 0.6350 | 0.6350 | 0.6362 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3