--- license: mit base_model: indobenchmark/indobert-large-p2 tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: wrete-indonlu results: [] --- # wrete-indonlu This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0433 - Accuracy: 0.98 - Precision: 0.98 - Recall: 0.98 - F1 Score: 0.9799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 0.1774 | 1.0 | 88 | 0.5232 | 0.92 | 0.92 | 0.92 | 0.9177 | | 0.0992 | 2.0 | 176 | 0.2976 | 0.94 | 0.94 | 0.94 | 0.9388 | | 0.0645 | 3.0 | 264 | 0.1118 | 0.98 | 0.98 | 0.98 | 0.9799 | | 0.029 | 4.0 | 352 | 0.1066 | 0.98 | 0.98 | 0.98 | 0.9799 | | 0.0333 | 5.0 | 440 | 0.0665 | 0.98 | 0.98 | 0.98 | 0.9799 | | 0.0153 | 6.0 | 528 | 0.0504 | 0.98 | 0.98 | 0.98 | 0.9799 | | 0.0092 | 7.0 | 616 | 0.0433 | 0.98 | 0.98 | 0.98 | 0.9799 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2