Commit
·
9e71106
1
Parent(s):
f1c3e3f
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1812.33 +/- 61.20
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6103362cc902af91381e6d445b6512bdada923c3e58db7cf568825105d5c4cd
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb2314a700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb2314a790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb2314a820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb2314a8b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcb2314a940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcb2314a9d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcb2314aa60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb2314aaf0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcb2314ab80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb2314ac10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb2314aca0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb2314ad30>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fcb230ce480>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679899002862528877,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPPltT+f/My+vrTYPWD87zyoRR2/PrPnvu0/db/9ljq/WvOEP9l5Hr9oERG+E/QAv/xN27/Sl20+E9CMPml0p7/Jnai/bYUwP/6UBr/acbe+oxLRvzLRhj+L6n8+WzSCP5GasL/xSKA+xemvv/qfM7/LP6k+oXBgvh+dmz6Lhyo+CZWpPtU9mj6uhwY/uJtuvQe6z78xoTQ/Ro8rP7dFEkAS9q2/9/++PyHWKL9re4c/gHatPxskA78eMoG7I4NCvm5Eyb9QmII/c5CEPyOBsb+RmrC/8UigPsXpr7/6nzO/+6EaPuW+mr9Wq0XAsCaQPsGHIj9IAU2//evWvxkovL6Zckw/YkVJv9BUyb9g9wa9HtqnPx18M7/9TwQ/agT5PmUleb/Y9RY/5rGXvthqFj8tbWU/j2XUO5jPB7/ZPus/kZqwv/FIoD7F6a+/+p8zv2Y1QD+eiY8/49p/P1bGvz6AE5M9a9JRP8ttOb7sVMi+wTupPpK0Vz/nPV0/s9iKvgOClr9ZXKe8m2OjvfXDAEBBqUo91ozOv1yZp78bejE+BgVnvwxHWb8HayU/E3hrv5mLOT/xSKA+EkY6P/qfM7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADRFDU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAY1TXPQAAAAAe2ee/AAAAABHrCD4AAAAAIOPwPwAAAAArPYM9AAAAALsA+D8AAAAADFaGvAAAAAAK7/2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2C9etgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKoLBD0AAAAA+F7rvwAAAADZN6s9AAAAALJo/D8AAAAAZd0GvgAAAACxRdo/AAAAANquZj0AAAAAwgz7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxxgjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBsnLg5AAAAAHgHAcAAAAAA1s7jPQAAAADqNes/AAAAADyJzj0AAAAAKp79PwAAAADKRDU9AAAAALq1/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1iwe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFPicPQAAAAB7Dea/AAAAANumWD0AAAAA2Mf+PwAAAACwxjK9AAAAAG1f9T8AAAAAr5i4PAAAAAAcR+S/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ9CsuL74zuMAWyUTegDjAF0lEdArKvhUHY6GXV9lChoBkdAoRd528qWkmgHTegDaAhHQKyzVD6WPcV1fZQoaAZHQKDl8EgW8AdoB03oA2gIR0Css9hrN4Z/dX2UKGgGR0ChatlglWwNaAdN6ANoCEdArLS6uW8h93V9lChoBkdAoRVTKcNH6WgHTegDaAhHQKy4TX05EMN1fZQoaAZHQKCj7/9YOlRoB03oA2gIR0Cswx3FcY65dX2UKGgGR0ChbywIt16maAdN6ANoCEdArMOjLMcIaHV9lChoBkdAoOHq3Zwn6WgHTegDaAhHQKzElCLMs6J1fZQoaAZHQKCcUd+XqqxoB03oA2gIR0CsyATP8hs7dX2UKGgGR0ChCd/kWAPNaAdN6ANoCEdArM9+5vtMPHV9lChoBkdAoEcvlCCz1WgHTegDaAhHQKzQCDxLCep1fZQoaAZHQJ749r+HaexoB03oA2gIR0Cs0PvGyX2NdX2UKGgGR0Cgz6aRyOrAaAdN6ANoCEdArNR0r7O3UnV9lChoBkdAnxxFOO8012gHTegDaAhHQKzfMaw2VFB1fZQoaAZHQJ863w3HaOBoB03oA2gIR0Cs4AQxWT5gdX2UKGgGR0CgJkDIaLn+aAdN6ANoCEdArOEzMibDuXV9lChoBkdAnurHb/Ot4mgHTegDaAhHQKzktM6BAfN1fZQoaAZHQJzfo4HX2/VoB03oA2gIR0Cs7GUmtyPudX2UKGgGR0Cgq54ZMtbtaAdN6ANoCEdArOzlfReC1HV9lChoBkdAnuHNG3F1jmgHTegDaAhHQKzt0zoEB8x1fZQoaAZHQKErPR2r4nFoB03oA2gIR0Cs8UQzUI9ldX2UKGgGR0CgiMhRIjGDaAdN6ANoCEdArPq1MqSX+nV9lChoBkdAoVO/4/NZ/2gHTegDaAhHQKz7h4rSVnp1fZQoaAZHQKG6IIdELIBoB03oA2gIR0Cs/PLvCuU2dX2UKGgGR0ChrhhkI5YHaAdN6ANoCEdArQEwInjQzHV9lChoBkdAoKd3Fo+OfmgHTegDaAhHQK0IqDKYAsF1fZQoaAZHQKGpT6KLsKNoB03oA2gIR0CtCSl1bJOndX2UKGgGR0ChYjpP69CeaAdN6ANoCEdArQoHZTQ3P3V9lChoBkdAoLhFclgMMWgHTegDaAhHQK0NgZLqUvB1fZQoaAZHQKDv0Ouq3mVoB03oA2gIR0CtFiqUu+RHdX2UKGgGR0Chvkzho/RmaAdN6ANoCEdArRbwkiUxEnV9lChoBkdAoY/wUL2HtWgHTegDaAhHQK0YR8hLXcx1fZQoaAZHQKH8qHBUJfJoB03oA2gIR0CtHZIi9qUNdX2UKGgGR0ChYe6Ln9vTaAdN6ANoCEdArSUZ+DvmYHV9lChoBkdAoYnrjHXEqGgHTegDaAhHQK0lm287IT51fZQoaAZHQKFVZ8Rcu8NoB03oA2gIR0CtJoHY6GQCdX2UKGgGR0Cf1Q3zcynDaAdN6ANoCEdArSn7w8W9DnV9lChoBkdAoAmBgE2YOWgHTegDaAhHQK0xk83++/R1fZQoaAZHQJ8iyHYYixFoB03oA2gIR0CtMlCwSrYHdX2UKGgGR0CgXlGPgeijaAdN6ANoCEdArTOaQeV9nnV9lChoBkdAoNlQaaTfSGgHTegDaAhHQK04wf6Ggzx1fZQoaAZHQKHmpS3LFGZoB03oA2gIR0CtQXJkGzKLdX2UKGgGR0ChvDwXhwVCaAdN6ANoCEdArUH24gA6uHV9lChoBkdAosQUWKuSwGgHTegDaAhHQK1C3VKf4AV1fZQoaAZHQKKC/f+CK79oB03oA2gIR0CtRjaJZW7wdX2UKGgGR0ChBj4tpVS5aAdN6ANoCEdArU3XztkWh3V9lChoBkdAocRtrGipN2gHTegDaAhHQK1OXmbLEDR1fZQoaAZHQKHjyjKPn0VoB03oA2gIR0CtT0x8MNMHdX2UKGgGR0ChDDSHuZ1FaAdN6ANoCEdArVQYV6/qPnV9lChoBkdAoTZ5hvze42gHTegDaAhHQK1d24sEq2B1fZQoaAZHQKG8bLK3d9FoB03oA2gIR0CtXmNFSbYsdX2UKGgGR0CgQ8o2OyVwaAdN6ANoCEdArV9HAM2FWXV9lChoBkdAol97DqGDc2gHTegDaAhHQK1isIfKZD11fZQoaAZHQKI/mNo8IRhoB03oA2gIR0Ctai++VTrFdX2UKGgGR0Chtg6hg3LnaAdN6ANoCEdArWq1pmEoOXV9lChoBkdAojH45NoJzGgHTegDaAhHQK1rl3s5XEJ1fZQoaAZHQKCZLmbLEDRoB03oA2gIR0Ctb1cQRPGidX2UKGgGR0Chm2X7DVH4aAdN6ANoCEdArXnibONYKnV9lChoBkdAoW/CkTHsC2gHTegDaAhHQK16ZK3/gix1fZQoaAZHQKHYKXgLqlhoB03oA2gIR0Cte00Nz8xcdX2UKGgGR0Chy7n6MzdlaAdN6ANoCEdArX6/x+az/3V9lChoBkdAoKLf3evZAmgHTegDaAhHQK2GPo4+8oR1fZQoaAZHQKF2Q7NjbztoB03oA2gIR0Cthr/dAPd3dX2UKGgGR0CiW295yEL6aAdN6ANoCEdArYesJ2MbWHV9lChoBkdAorBfj2i+L2gHTegDaAhHQK2LE/wiJO51fZQoaAZHQKKPuW/JvHdoB03oA2gIR0Ctla9iDujRdX2UKGgGR0CiPHsqJ/G3aAdN6ANoCEdArZaA7vG6w3V9lChoBkdAof2oMpgCwWgHTegDaAhHQK2XkZGax5d1fZQoaAZHQJ8HiV/tpmFoB03oA2gIR0CtmwSEUTL4dX2UKGgGR0Ch0bZhz/6waAdN6ANoCEdAraJ1NQCSzXV9lChoBkdAoSb9fZ26kWgHTegDaAhHQK2i9p0OmSB1fZQoaAZHQKEj8Moc7yRoB03oA2gIR0Cto9jUmUnpdX2UKGgGR0CiQb/EOy3TaAdN6ANoCEdArac9C1JDmnV9lChoBkdAoHtvzDn/1mgHTegDaAhHQK2wp2RJVbR1fZQoaAZHQJ9kjB1s+FFoB03oA2gIR0CtsW3kxREXdX2UKGgGR0CgICvegte2aAdN6ANoCEdArbLMzMzMzXV9lChoBkdAoQ07yrgfl2gHTegDaAhHQK23NBmf5DZ1fZQoaAZHQJrDW3x4IKNoB03oA2gIR0CtvrdTP0I1dX2UKGgGR0CeNi1gH/tIaAdN6ANoCEdArb9AIfKZD3V9lChoBkdAnBxd2ovSMWgHTegDaAhHQK3AIsEq2Bt1fZQoaAZHQJ6b9Z7ojfNoB03oA2gIR0Ctw6m+bmU4dX2UKGgGR0CdG4x5cC5maAdN6ANoCEdArcwrCm/Fi3V9lChoBkdAndp/jwQUYmgHTegDaAhHQK3M6wDeTFF1fZQoaAZHQJySUXizcARoB03oA2gIR0CtzkbF0gbIdX2UKGgGR0CanvvzOHFhaAdN6ANoCEdArdO5RsMy8HV9lChoBkdAnw0AR02ca2gHTegDaAhHQK3bSuSOinJ1fZQoaAZHQJ7EZOFg2IhoB03oA2gIR0Ct29GFSKm9dX2UKGgGR0CcjPHskY4yaAdN6ANoCEdArdy258Sf2HV9lChoBkdAns+6Ieo1k2gHTegDaAhHQK3gKo6S1Vp1fZQoaAZHQJ7P/jR2KVJoB03oA2gIR0Ct5+M4T9KmdX2UKGgGR0CdZxzxwyZbaAdN6ANoCEdAreim7OE/S3V9lChoBkdAnmi6Mzdk8WgHTegDaAhHQK3p7bpu/Dd1fZQoaAZHQJ9Ykdfb9IhoB03oA2gIR0Ct7wxJVbRndX2UKGgGR0CepYFQ2uPnaAdN6ANoCEdArfejIkqto3V9lChoBkdAnrH5a3ZwoGgHTegDaAhHQK34Ju63AmB1fZQoaAZHQJ4Qy8CgbqBoB03oA2gIR0Ct+Q5A6dUbdX2UKGgGR0CehGWcBltkaAdN6ANoCEdArfyDTKDCg3V9lChoBkdAnmZnrMTviWgHTegDaAhHQK4EIdmQKa51fZQoaAZHQJsKtQbdadNoB03oA2gIR0CuBLFJg9eQdX2UKGgGR0CdDKXHzYmLaAdN6ANoCEdArgWfRTjvNXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f18ca7e80ed10b9c87e206354ac14c69cb91207d776bf6e253a01b7050961425
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f912be34b178905ef8ea8c797ecadbb37d27ad8a3eea8fb172837c92e637c60
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb2314a700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb2314a790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb2314a820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb2314a8b0>", "_build": "<function ActorCriticPolicy._build at 0x7fcb2314a940>", "forward": "<function ActorCriticPolicy.forward at 0x7fcb2314a9d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcb2314aa60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb2314aaf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcb2314ab80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb2314ac10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb2314aca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb2314ad30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcb230ce480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679899002862528877, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPPltT+f/My+vrTYPWD87zyoRR2/PrPnvu0/db/9ljq/WvOEP9l5Hr9oERG+E/QAv/xN27/Sl20+E9CMPml0p7/Jnai/bYUwP/6UBr/acbe+oxLRvzLRhj+L6n8+WzSCP5GasL/xSKA+xemvv/qfM7/LP6k+oXBgvh+dmz6Lhyo+CZWpPtU9mj6uhwY/uJtuvQe6z78xoTQ/Ro8rP7dFEkAS9q2/9/++PyHWKL9re4c/gHatPxskA78eMoG7I4NCvm5Eyb9QmII/c5CEPyOBsb+RmrC/8UigPsXpr7/6nzO/+6EaPuW+mr9Wq0XAsCaQPsGHIj9IAU2//evWvxkovL6Zckw/YkVJv9BUyb9g9wa9HtqnPx18M7/9TwQ/agT5PmUleb/Y9RY/5rGXvthqFj8tbWU/j2XUO5jPB7/ZPus/kZqwv/FIoD7F6a+/+p8zv2Y1QD+eiY8/49p/P1bGvz6AE5M9a9JRP8ttOb7sVMi+wTupPpK0Vz/nPV0/s9iKvgOClr9ZXKe8m2OjvfXDAEBBqUo91ozOv1yZp78bejE+BgVnvwxHWb8HayU/E3hrv5mLOT/xSKA+EkY6P/qfM7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADRFDU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAY1TXPQAAAAAe2ee/AAAAABHrCD4AAAAAIOPwPwAAAAArPYM9AAAAALsA+D8AAAAADFaGvAAAAAAK7/2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2C9etgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKoLBD0AAAAA+F7rvwAAAADZN6s9AAAAALJo/D8AAAAAZd0GvgAAAACxRdo/AAAAANquZj0AAAAAwgz7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxxgjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBsnLg5AAAAAHgHAcAAAAAA1s7jPQAAAADqNes/AAAAADyJzj0AAAAAKp79PwAAAADKRDU9AAAAALq1/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1iwe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFPicPQAAAAB7Dea/AAAAANumWD0AAAAA2Mf+PwAAAACwxjK9AAAAAG1f9T8AAAAAr5i4PAAAAAAcR+S/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ9CsuL74zuMAWyUTegDjAF0lEdArKvhUHY6GXV9lChoBkdAoRd528qWkmgHTegDaAhHQKyzVD6WPcV1fZQoaAZHQKDl8EgW8AdoB03oA2gIR0Css9hrN4Z/dX2UKGgGR0ChatlglWwNaAdN6ANoCEdArLS6uW8h93V9lChoBkdAoRVTKcNH6WgHTegDaAhHQKy4TX05EMN1fZQoaAZHQKCj7/9YOlRoB03oA2gIR0Cswx3FcY65dX2UKGgGR0ChbywIt16maAdN6ANoCEdArMOjLMcIaHV9lChoBkdAoOHq3Zwn6WgHTegDaAhHQKzElCLMs6J1fZQoaAZHQKCcUd+XqqxoB03oA2gIR0CsyATP8hs7dX2UKGgGR0ChCd/kWAPNaAdN6ANoCEdArM9+5vtMPHV9lChoBkdAoEcvlCCz1WgHTegDaAhHQKzQCDxLCep1fZQoaAZHQJ749r+HaexoB03oA2gIR0Cs0PvGyX2NdX2UKGgGR0Cgz6aRyOrAaAdN6ANoCEdArNR0r7O3UnV9lChoBkdAnxxFOO8012gHTegDaAhHQKzfMaw2VFB1fZQoaAZHQJ863w3HaOBoB03oA2gIR0Cs4AQxWT5gdX2UKGgGR0CgJkDIaLn+aAdN6ANoCEdArOEzMibDuXV9lChoBkdAnurHb/Ot4mgHTegDaAhHQKzktM6BAfN1fZQoaAZHQJzfo4HX2/VoB03oA2gIR0Cs7GUmtyPudX2UKGgGR0Cgq54ZMtbtaAdN6ANoCEdArOzlfReC1HV9lChoBkdAnuHNG3F1jmgHTegDaAhHQKzt0zoEB8x1fZQoaAZHQKErPR2r4nFoB03oA2gIR0Cs8UQzUI9ldX2UKGgGR0CgiMhRIjGDaAdN6ANoCEdArPq1MqSX+nV9lChoBkdAoVO/4/NZ/2gHTegDaAhHQKz7h4rSVnp1fZQoaAZHQKG6IIdELIBoB03oA2gIR0Cs/PLvCuU2dX2UKGgGR0ChrhhkI5YHaAdN6ANoCEdArQEwInjQzHV9lChoBkdAoKd3Fo+OfmgHTegDaAhHQK0IqDKYAsF1fZQoaAZHQKGpT6KLsKNoB03oA2gIR0CtCSl1bJOndX2UKGgGR0ChYjpP69CeaAdN6ANoCEdArQoHZTQ3P3V9lChoBkdAoLhFclgMMWgHTegDaAhHQK0NgZLqUvB1fZQoaAZHQKDv0Ouq3mVoB03oA2gIR0CtFiqUu+RHdX2UKGgGR0Chvkzho/RmaAdN6ANoCEdArRbwkiUxEnV9lChoBkdAoY/wUL2HtWgHTegDaAhHQK0YR8hLXcx1fZQoaAZHQKH8qHBUJfJoB03oA2gIR0CtHZIi9qUNdX2UKGgGR0ChYe6Ln9vTaAdN6ANoCEdArSUZ+DvmYHV9lChoBkdAoYnrjHXEqGgHTegDaAhHQK0lm287IT51fZQoaAZHQKFVZ8Rcu8NoB03oA2gIR0CtJoHY6GQCdX2UKGgGR0Cf1Q3zcynDaAdN6ANoCEdArSn7w8W9DnV9lChoBkdAoAmBgE2YOWgHTegDaAhHQK0xk83++/R1fZQoaAZHQJ8iyHYYixFoB03oA2gIR0CtMlCwSrYHdX2UKGgGR0CgXlGPgeijaAdN6ANoCEdArTOaQeV9nnV9lChoBkdAoNlQaaTfSGgHTegDaAhHQK04wf6Ggzx1fZQoaAZHQKHmpS3LFGZoB03oA2gIR0CtQXJkGzKLdX2UKGgGR0ChvDwXhwVCaAdN6ANoCEdArUH24gA6uHV9lChoBkdAosQUWKuSwGgHTegDaAhHQK1C3VKf4AV1fZQoaAZHQKKC/f+CK79oB03oA2gIR0CtRjaJZW7wdX2UKGgGR0ChBj4tpVS5aAdN6ANoCEdArU3XztkWh3V9lChoBkdAocRtrGipN2gHTegDaAhHQK1OXmbLEDR1fZQoaAZHQKHjyjKPn0VoB03oA2gIR0CtT0x8MNMHdX2UKGgGR0ChDDSHuZ1FaAdN6ANoCEdArVQYV6/qPnV9lChoBkdAoTZ5hvze42gHTegDaAhHQK1d24sEq2B1fZQoaAZHQKG8bLK3d9FoB03oA2gIR0CtXmNFSbYsdX2UKGgGR0CgQ8o2OyVwaAdN6ANoCEdArV9HAM2FWXV9lChoBkdAol97DqGDc2gHTegDaAhHQK1isIfKZD11fZQoaAZHQKI/mNo8IRhoB03oA2gIR0Ctai++VTrFdX2UKGgGR0Chtg6hg3LnaAdN6ANoCEdArWq1pmEoOXV9lChoBkdAojH45NoJzGgHTegDaAhHQK1rl3s5XEJ1fZQoaAZHQKCZLmbLEDRoB03oA2gIR0Ctb1cQRPGidX2UKGgGR0Chm2X7DVH4aAdN6ANoCEdArXnibONYKnV9lChoBkdAoW/CkTHsC2gHTegDaAhHQK16ZK3/gix1fZQoaAZHQKHYKXgLqlhoB03oA2gIR0Cte00Nz8xcdX2UKGgGR0Chy7n6MzdlaAdN6ANoCEdArX6/x+az/3V9lChoBkdAoKLf3evZAmgHTegDaAhHQK2GPo4+8oR1fZQoaAZHQKF2Q7NjbztoB03oA2gIR0Cthr/dAPd3dX2UKGgGR0CiW295yEL6aAdN6ANoCEdArYesJ2MbWHV9lChoBkdAorBfj2i+L2gHTegDaAhHQK2LE/wiJO51fZQoaAZHQKKPuW/JvHdoB03oA2gIR0Ctla9iDujRdX2UKGgGR0CiPHsqJ/G3aAdN6ANoCEdArZaA7vG6w3V9lChoBkdAof2oMpgCwWgHTegDaAhHQK2XkZGax5d1fZQoaAZHQJ8HiV/tpmFoB03oA2gIR0CtmwSEUTL4dX2UKGgGR0Ch0bZhz/6waAdN6ANoCEdAraJ1NQCSzXV9lChoBkdAoSb9fZ26kWgHTegDaAhHQK2i9p0OmSB1fZQoaAZHQKEj8Moc7yRoB03oA2gIR0Cto9jUmUnpdX2UKGgGR0CiQb/EOy3TaAdN6ANoCEdArac9C1JDmnV9lChoBkdAoHtvzDn/1mgHTegDaAhHQK2wp2RJVbR1fZQoaAZHQJ9kjB1s+FFoB03oA2gIR0CtsW3kxREXdX2UKGgGR0CgICvegte2aAdN6ANoCEdArbLMzMzMzXV9lChoBkdAoQ07yrgfl2gHTegDaAhHQK23NBmf5DZ1fZQoaAZHQJrDW3x4IKNoB03oA2gIR0CtvrdTP0I1dX2UKGgGR0CeNi1gH/tIaAdN6ANoCEdArb9AIfKZD3V9lChoBkdAnBxd2ovSMWgHTegDaAhHQK3AIsEq2Bt1fZQoaAZHQJ6b9Z7ojfNoB03oA2gIR0Ctw6m+bmU4dX2UKGgGR0CdG4x5cC5maAdN6ANoCEdArcwrCm/Fi3V9lChoBkdAndp/jwQUYmgHTegDaAhHQK3M6wDeTFF1fZQoaAZHQJySUXizcARoB03oA2gIR0CtzkbF0gbIdX2UKGgGR0CanvvzOHFhaAdN6ANoCEdArdO5RsMy8HV9lChoBkdAnw0AR02ca2gHTegDaAhHQK3bSuSOinJ1fZQoaAZHQJ7EZOFg2IhoB03oA2gIR0Ct29GFSKm9dX2UKGgGR0CcjPHskY4yaAdN6ANoCEdArdy258Sf2HV9lChoBkdAns+6Ieo1k2gHTegDaAhHQK3gKo6S1Vp1fZQoaAZHQJ7P/jR2KVJoB03oA2gIR0Ct5+M4T9KmdX2UKGgGR0CdZxzxwyZbaAdN6ANoCEdAreim7OE/S3V9lChoBkdAnmi6Mzdk8WgHTegDaAhHQK3p7bpu/Dd1fZQoaAZHQJ9Ykdfb9IhoB03oA2gIR0Ct7wxJVbRndX2UKGgGR0CepYFQ2uPnaAdN6ANoCEdArfejIkqto3V9lChoBkdAnrH5a3ZwoGgHTegDaAhHQK34Ju63AmB1fZQoaAZHQJ4Qy8CgbqBoB03oA2gIR0Ct+Q5A6dUbdX2UKGgGR0CehGWcBltkaAdN6ANoCEdArfyDTKDCg3V9lChoBkdAnmZnrMTviWgHTegDaAhHQK4EIdmQKa51fZQoaAZHQJsKtQbdadNoB03oA2gIR0CuBLFJg9eQdX2UKGgGR0CdDKXHzYmLaAdN6ANoCEdArgWfRTjvNXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74ec09cc030fe62b26ccdf056cd2e4f32c2dcef4fb6ae6d3a84fe0b99b13561b
|
3 |
+
size 1190876
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1812.3327806045768, "std_reward": 61.19745190463627, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-27T07:39:50.275576"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f9ec518e72ef9e145d2569ec9e985885aa5dac565613ed9a59fafc4a440ef4a
|
3 |
+
size 2136
|