{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcb230ce480>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679899002862528877, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPPltT+f/My+vrTYPWD87zyoRR2/PrPnvu0/db/9ljq/WvOEP9l5Hr9oERG+E/QAv/xN27/Sl20+E9CMPml0p7/Jnai/bYUwP/6UBr/acbe+oxLRvzLRhj+L6n8+WzSCP5GasL/xSKA+xemvv/qfM7/LP6k+oXBgvh+dmz6Lhyo+CZWpPtU9mj6uhwY/uJtuvQe6z78xoTQ/Ro8rP7dFEkAS9q2/9/++PyHWKL9re4c/gHatPxskA78eMoG7I4NCvm5Eyb9QmII/c5CEPyOBsb+RmrC/8UigPsXpr7/6nzO/+6EaPuW+mr9Wq0XAsCaQPsGHIj9IAU2//evWvxkovL6Zckw/YkVJv9BUyb9g9wa9HtqnPx18M7/9TwQ/agT5PmUleb/Y9RY/5rGXvthqFj8tbWU/j2XUO5jPB7/ZPus/kZqwv/FIoD7F6a+/+p8zv2Y1QD+eiY8/49p/P1bGvz6AE5M9a9JRP8ttOb7sVMi+wTupPpK0Vz/nPV0/s9iKvgOClr9ZXKe8m2OjvfXDAEBBqUo91ozOv1yZp78bejE+BgVnvwxHWb8HayU/E3hrv5mLOT/xSKA+EkY6P/qfM7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADRFDU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAY1TXPQAAAAAe2ee/AAAAABHrCD4AAAAAIOPwPwAAAAArPYM9AAAAALsA+D8AAAAADFaGvAAAAAAK7/2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2C9etgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKoLBD0AAAAA+F7rvwAAAADZN6s9AAAAALJo/D8AAAAAZd0GvgAAAACxRdo/AAAAANquZj0AAAAAwgz7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxxgjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBsnLg5AAAAAHgHAcAAAAAA1s7jPQAAAADqNes/AAAAADyJzj0AAAAAKp79PwAAAADKRDU9AAAAALq1/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1iwe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFPicPQAAAAB7Dea/AAAAANumWD0AAAAA2Mf+PwAAAACwxjK9AAAAAG1f9T8AAAAAr5i4PAAAAAAcR+S/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ9CsuL74zuMAWyUTegDjAF0lEdArKvhUHY6GXV9lChoBkdAoRd528qWkmgHTegDaAhHQKyzVD6WPcV1fZQoaAZHQKDl8EgW8AdoB03oA2gIR0Css9hrN4Z/dX2UKGgGR0ChatlglWwNaAdN6ANoCEdArLS6uW8h93V9lChoBkdAoRVTKcNH6WgHTegDaAhHQKy4TX05EMN1fZQoaAZHQKCj7/9YOlRoB03oA2gIR0Cswx3FcY65dX2UKGgGR0ChbywIt16maAdN6ANoCEdArMOjLMcIaHV9lChoBkdAoOHq3Zwn6WgHTegDaAhHQKzElCLMs6J1fZQoaAZHQKCcUd+XqqxoB03oA2gIR0CsyATP8hs7dX2UKGgGR0ChCd/kWAPNaAdN6ANoCEdArM9+5vtMPHV9lChoBkdAoEcvlCCz1WgHTegDaAhHQKzQCDxLCep1fZQoaAZHQJ749r+HaexoB03oA2gIR0Cs0PvGyX2NdX2UKGgGR0Cgz6aRyOrAaAdN6ANoCEdArNR0r7O3UnV9lChoBkdAnxxFOO8012gHTegDaAhHQKzfMaw2VFB1fZQoaAZHQJ863w3HaOBoB03oA2gIR0Cs4AQxWT5gdX2UKGgGR0CgJkDIaLn+aAdN6ANoCEdArOEzMibDuXV9lChoBkdAnurHb/Ot4mgHTegDaAhHQKzktM6BAfN1fZQoaAZHQJzfo4HX2/VoB03oA2gIR0Cs7GUmtyPudX2UKGgGR0Cgq54ZMtbtaAdN6ANoCEdArOzlfReC1HV9lChoBkdAnuHNG3F1jmgHTegDaAhHQKzt0zoEB8x1fZQoaAZHQKErPR2r4nFoB03oA2gIR0Cs8UQzUI9ldX2UKGgGR0CgiMhRIjGDaAdN6ANoCEdArPq1MqSX+nV9lChoBkdAoVO/4/NZ/2gHTegDaAhHQKz7h4rSVnp1fZQoaAZHQKG6IIdELIBoB03oA2gIR0Cs/PLvCuU2dX2UKGgGR0ChrhhkI5YHaAdN6ANoCEdArQEwInjQzHV9lChoBkdAoKd3Fo+OfmgHTegDaAhHQK0IqDKYAsF1fZQoaAZHQKGpT6KLsKNoB03oA2gIR0CtCSl1bJOndX2UKGgGR0ChYjpP69CeaAdN6ANoCEdArQoHZTQ3P3V9lChoBkdAoLhFclgMMWgHTegDaAhHQK0NgZLqUvB1fZQoaAZHQKDv0Ouq3mVoB03oA2gIR0CtFiqUu+RHdX2UKGgGR0Chvkzho/RmaAdN6ANoCEdArRbwkiUxEnV9lChoBkdAoY/wUL2HtWgHTegDaAhHQK0YR8hLXcx1fZQoaAZHQKH8qHBUJfJoB03oA2gIR0CtHZIi9qUNdX2UKGgGR0ChYe6Ln9vTaAdN6ANoCEdArSUZ+DvmYHV9lChoBkdAoYnrjHXEqGgHTegDaAhHQK0lm287IT51fZQoaAZHQKFVZ8Rcu8NoB03oA2gIR0CtJoHY6GQCdX2UKGgGR0Cf1Q3zcynDaAdN6ANoCEdArSn7w8W9DnV9lChoBkdAoAmBgE2YOWgHTegDaAhHQK0xk83++/R1fZQoaAZHQJ8iyHYYixFoB03oA2gIR0CtMlCwSrYHdX2UKGgGR0CgXlGPgeijaAdN6ANoCEdArTOaQeV9nnV9lChoBkdAoNlQaaTfSGgHTegDaAhHQK04wf6Ggzx1fZQoaAZHQKHmpS3LFGZoB03oA2gIR0CtQXJkGzKLdX2UKGgGR0ChvDwXhwVCaAdN6ANoCEdArUH24gA6uHV9lChoBkdAosQUWKuSwGgHTegDaAhHQK1C3VKf4AV1fZQoaAZHQKKC/f+CK79oB03oA2gIR0CtRjaJZW7wdX2UKGgGR0ChBj4tpVS5aAdN6ANoCEdArU3XztkWh3V9lChoBkdAocRtrGipN2gHTegDaAhHQK1OXmbLEDR1fZQoaAZHQKHjyjKPn0VoB03oA2gIR0CtT0x8MNMHdX2UKGgGR0ChDDSHuZ1FaAdN6ANoCEdArVQYV6/qPnV9lChoBkdAoTZ5hvze42gHTegDaAhHQK1d24sEq2B1fZQoaAZHQKG8bLK3d9FoB03oA2gIR0CtXmNFSbYsdX2UKGgGR0CgQ8o2OyVwaAdN6ANoCEdArV9HAM2FWXV9lChoBkdAol97DqGDc2gHTegDaAhHQK1isIfKZD11fZQoaAZHQKI/mNo8IRhoB03oA2gIR0Ctai++VTrFdX2UKGgGR0Chtg6hg3LnaAdN6ANoCEdArWq1pmEoOXV9lChoBkdAojH45NoJzGgHTegDaAhHQK1rl3s5XEJ1fZQoaAZHQKCZLmbLEDRoB03oA2gIR0Ctb1cQRPGidX2UKGgGR0Chm2X7DVH4aAdN6ANoCEdArXnibONYKnV9lChoBkdAoW/CkTHsC2gHTegDaAhHQK16ZK3/gix1fZQoaAZHQKHYKXgLqlhoB03oA2gIR0Cte00Nz8xcdX2UKGgGR0Chy7n6MzdlaAdN6ANoCEdArX6/x+az/3V9lChoBkdAoKLf3evZAmgHTegDaAhHQK2GPo4+8oR1fZQoaAZHQKF2Q7NjbztoB03oA2gIR0Cthr/dAPd3dX2UKGgGR0CiW295yEL6aAdN6ANoCEdArYesJ2MbWHV9lChoBkdAorBfj2i+L2gHTegDaAhHQK2LE/wiJO51fZQoaAZHQKKPuW/JvHdoB03oA2gIR0Ctla9iDujRdX2UKGgGR0CiPHsqJ/G3aAdN6ANoCEdArZaA7vG6w3V9lChoBkdAof2oMpgCwWgHTegDaAhHQK2XkZGax5d1fZQoaAZHQJ8HiV/tpmFoB03oA2gIR0CtmwSEUTL4dX2UKGgGR0Ch0bZhz/6waAdN6ANoCEdAraJ1NQCSzXV9lChoBkdAoSb9fZ26kWgHTegDaAhHQK2i9p0OmSB1fZQoaAZHQKEj8Moc7yRoB03oA2gIR0Cto9jUmUnpdX2UKGgGR0CiQb/EOy3TaAdN6ANoCEdArac9C1JDmnV9lChoBkdAoHtvzDn/1mgHTegDaAhHQK2wp2RJVbR1fZQoaAZHQJ9kjB1s+FFoB03oA2gIR0CtsW3kxREXdX2UKGgGR0CgICvegte2aAdN6ANoCEdArbLMzMzMzXV9lChoBkdAoQ07yrgfl2gHTegDaAhHQK23NBmf5DZ1fZQoaAZHQJrDW3x4IKNoB03oA2gIR0CtvrdTP0I1dX2UKGgGR0CeNi1gH/tIaAdN6ANoCEdArb9AIfKZD3V9lChoBkdAnBxd2ovSMWgHTegDaAhHQK3AIsEq2Bt1fZQoaAZHQJ6b9Z7ojfNoB03oA2gIR0Ctw6m+bmU4dX2UKGgGR0CdG4x5cC5maAdN6ANoCEdArcwrCm/Fi3V9lChoBkdAndp/jwQUYmgHTegDaAhHQK3M6wDeTFF1fZQoaAZHQJySUXizcARoB03oA2gIR0CtzkbF0gbIdX2UKGgGR0CanvvzOHFhaAdN6ANoCEdArdO5RsMy8HV9lChoBkdAnw0AR02ca2gHTegDaAhHQK3bSuSOinJ1fZQoaAZHQJ7EZOFg2IhoB03oA2gIR0Ct29GFSKm9dX2UKGgGR0CcjPHskY4yaAdN6ANoCEdArdy258Sf2HV9lChoBkdAns+6Ieo1k2gHTegDaAhHQK3gKo6S1Vp1fZQoaAZHQJ7P/jR2KVJoB03oA2gIR0Ct5+M4T9KmdX2UKGgGR0CdZxzxwyZbaAdN6ANoCEdAreim7OE/S3V9lChoBkdAnmi6Mzdk8WgHTegDaAhHQK3p7bpu/Dd1fZQoaAZHQJ9Ykdfb9IhoB03oA2gIR0Ct7wxJVbRndX2UKGgGR0CepYFQ2uPnaAdN6ANoCEdArfejIkqto3V9lChoBkdAnrH5a3ZwoGgHTegDaAhHQK34Ju63AmB1fZQoaAZHQJ4Qy8CgbqBoB03oA2gIR0Ct+Q5A6dUbdX2UKGgGR0CehGWcBltkaAdN6ANoCEdArfyDTKDCg3V9lChoBkdAnmZnrMTviWgHTegDaAhHQK4EIdmQKa51fZQoaAZHQJsKtQbdadNoB03oA2gIR0CuBLFJg9eQdX2UKGgGR0CdDKXHzYmLaAdN6ANoCEdArgWfRTjvNXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}