Commit
·
18c275b
1
Parent(s):
127aa5c
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.26 +/- 0.24
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae4cf41120b4a52967cfaaa4be0e71dd2d140c69862225ab819f0de5e4963607
|
3 |
+
size 108016
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcb2314ae50>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fcb230ce640>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1679903116707813850,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnIy8PpVT5TyNkxI/nIy8PpVT5TyNkxI/nIy8PpVT5TyNkxI/nIy8PpVT5TyNkxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAH07ev5uDTD8RPQI/mDzVP8OY2z+4K5M/zv2Tvf1/oL+CxtY/nexOP2HPQT708JU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACcjLw+lVPlPI2TEj+Se9I79guJO6H0BbucjLw+lVPlPI2TEj+Se9I79guJO6H0BbucjLw+lVPlPI2TEj+Se9I79guJO6H0BbucjLw+lVPlPI2TEj+Se9I79guJO6H0BbuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.36826026 0.02799396 0.57256395]\n [0.36826026 0.02799396 0.57256395]\n [0.36826026 0.02799396 0.57256395]\n [0.36826026 0.02799396 0.57256395]]",
|
60 |
+
"desired_goal": "[[-1.7367591 0.79888314 0.5087443 ]\n [ 1.6659117 1.7155994 1.1497717 ]\n [-0.07226144 -1.2539059 1.677933 ]\n [ 0.80829793 0.18926765 1.1714158 ]]",
|
61 |
+
"observation": "[[ 0.36826026 0.02799396 0.57256395 0.00642342 0.00418233 -0.002044 ]\n [ 0.36826026 0.02799396 0.57256395 0.00642342 0.00418233 -0.002044 ]\n [ 0.36826026 0.02799396 0.57256395 0.00642342 0.00418233 -0.002044 ]\n [ 0.36826026 0.02799396 0.57256395 0.00642342 0.00418233 -0.002044 ]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/eAMPu1dAz7CBIc+3gsNPTkxCb1ckYQ+kQUVvv86072ZyUg+Zl76PJMlYzxzjYU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.13757701 0.12828799 0.26370817]\n [ 0.03443515 -0.03349421 0.2589215 ]\n [-0.14552905 -0.10313987 0.19608153]\n [ 0.03056259 0.01386394 0.0652112 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYto391cP6r+UhpRSlIwBbJRLMowBdJRHQKdwR9/jKgZ1fZQoaAZoCWgPQwiG4/kMqDfmv5SGlFKUaBVLMmgWR0CncAjs2NvPdX2UKGgGaAloD0MIXHSy1Hq/5r+UhpRSlGgVSzJoFkdAp2/LfgrH2nV9lChoBmgJaA9DCBoVONkG7ua/lIaUUpRoFUsyaBZHQKdvjQb+98J1fZQoaAZoCWgPQwijWG5pNST4v5SGlFKUaBVLMmgWR0CncWH+IdlvdX2UKGgGaAloD0MIr3rAPGTK6b+UhpRSlGgVSzJoFkdAp3Ei/GlyinV9lChoBmgJaA9DCOolxjL9EvC/lIaUUpRoFUsyaBZHQKdw5dLxqfx1fZQoaAZoCWgPQwgkXwmkxG7xv5SGlFKUaBVLMmgWR0CncKdM9KVZdX2UKGgGaAloD0MIw4AlV7H42L+UhpRSlGgVSzJoFkdAp3J+8CgbqHV9lChoBmgJaA9DCCC3Xz5ZMfq/lIaUUpRoFUsyaBZHQKdyQALApKB1fZQoaAZoCWgPQwh9eJYgI6Dzv5SGlFKUaBVLMmgWR0CncgKZtvXLdX2UKGgGaAloD0MI3CxeLAyR5L+UhpRSlGgVSzJoFkdAp3HEJdB0IXV9lChoBmgJaA9DCB8OEqJ8Qeq/lIaUUpRoFUsyaBZHQKdzopOvdM11fZQoaAZoCWgPQwj8OJojK7/tv5SGlFKUaBVLMmgWR0Cnc2PMr3CbdX2UKGgGaAloD0MI9IsS9Bf64L+UhpRSlGgVSzJoFkdAp3MmTFERa3V9lChoBmgJaA9DCBH8byU7tue/lIaUUpRoFUsyaBZHQKdy58uSOip1fZQoaAZoCWgPQwjiWBe30UDzv5SGlFKUaBVLMmgWR0CndPRTCLuQdX2UKGgGaAloD0MIHsNjP4ul67+UhpRSlGgVSzJoFkdAp3S2IAOrhnV9lChoBmgJaA9DCDEm/b0UnuC/lIaUUpRoFUsyaBZHQKd0eZR8+id1fZQoaAZoCWgPQwhXz0nvGx/zv5SGlFKUaBVLMmgWR0CndDv/BFd+dX2UKGgGaAloD0MILzNslPUb9r+UhpRSlGgVSzJoFkdAp3bGp++dsnV9lChoBmgJaA9DCG6l12ZjJdi/lIaUUpRoFUsyaBZHQKd2iE4ecQR1fZQoaAZoCWgPQwi+iLZj6i7mv5SGlFKUaBVLMmgWR0Cndku3c580dX2UKGgGaAloD0MI4IJsWb4u5L+UhpRSlGgVSzJoFkdAp3YOSpzcRHV9lChoBmgJaA9DCPQZUG9GTe2/lIaUUpRoFUsyaBZHQKd4kZ2IO6N1fZQoaAZoCWgPQwj0/dR46Sbhv5SGlFKUaBVLMmgWR0CneFOTaCcxdX2UKGgGaAloD0MIBHCzeLGw57+UhpRSlGgVSzJoFkdAp3gXGACnxnV9lChoBmgJaA9DCFvSUQ5mU/C/lIaUUpRoFUsyaBZHQKd32flp48l1fZQoaAZoCWgPQwiq0hbX+Mzov5SGlFKUaBVLMmgWR0Cnemkb5uZUdX2UKGgGaAloD0MIL/oK0oxF7b+UhpRSlGgVSzJoFkdAp3orMTviLnV9lChoBmgJaA9DCFopBHKJo+y/lIaUUpRoFUsyaBZHQKd57pCa7Vd1fZQoaAZoCWgPQwhpc5zbhPvtv5SGlFKUaBVLMmgWR0CnebEidJ8OdX2UKGgGaAloD0MIVDasqSyK7b+UhpRSlGgVSzJoFkdAp3xpOpKjBXV9lChoBmgJaA9DCJ92+GuyhvC/lIaUUpRoFUsyaBZHQKd8Kylenht1fZQoaAZoCWgPQwjMYfcdw+Piv5SGlFKUaBVLMmgWR0Cne+6Hj6vadX2UKGgGaAloD0MIY9LfS+FB17+UhpRSlGgVSzJoFkdAp3uxCfHxSnV9lChoBmgJaA9DCDPd66S+LPG/lIaUUpRoFUsyaBZHQKd+Z0h/y5J1fZQoaAZoCWgPQwh9JCU9DK3sv5SGlFKUaBVLMmgWR0CnfikqlP8AdX2UKGgGaAloD0MIyRzLu+rB9L+UhpRSlGgVSzJoFkdAp33suHvc8HV9lChoBmgJaA9DCEs+dhcoKdu/lIaUUpRoFUsyaBZHQKd9ry1eBxx1fZQoaAZoCWgPQwis5c5MMJz0v5SGlFKUaBVLMmgWR0Cnf5onBtUGdX2UKGgGaAloD0MIeuI5W0Bo4b+UhpRSlGgVSzJoFkdAp39bSG8Em3V9lChoBmgJaA9DCDnyQGSRJuy/lIaUUpRoFUsyaBZHQKd/HeQdS2p1fZQoaAZoCWgPQwhAw5s1eF/pv5SGlFKUaBVLMmgWR0Cnft+D3/PxdX2UKGgGaAloD0MIl3X/WIiO6L+UhpRSlGgVSzJoFkdAp4DPQyAQQXV9lChoBmgJaA9DCI1iuaXVEOS/lIaUUpRoFUsyaBZHQKeAkF10T111fZQoaAZoCWgPQwjtt3aiJCTgv5SGlFKUaBVLMmgWR0CngFMYuTRqdX2UKGgGaAloD0MI0H8PXru08b+UhpRSlGgVSzJoFkdAp4AUx0uDjHV9lChoBmgJaA9DCIqPT8jOG/2/lIaUUpRoFUsyaBZHQKeB6PGyX2N1fZQoaAZoCWgPQwiHTWTmApfzv5SGlFKUaBVLMmgWR0CngaoatLcsdX2UKGgGaAloD0MIeCefHtuy7r+UhpRSlGgVSzJoFkdAp4Fsmnfl63V9lChoBmgJaA9DCAZjRKLQsua/lIaUUpRoFUsyaBZHQKeBLhYvFm51fZQoaAZoCWgPQwiUoSqm0k/wv5SGlFKUaBVLMmgWR0Cngv7z06HTdX2UKGgGaAloD0MIZaiKqfQT37+UhpRSlGgVSzJoFkdAp4K//aQFLXV9lChoBmgJaA9DCA3H8xlQb/G/lIaUUpRoFUsyaBZHQKeCgood+5R1fZQoaAZoCWgPQwgo0v2cgnz0v5SGlFKUaBVLMmgWR0CngkQaaTfSdX2UKGgGaAloD0MINNb+zvao8r+UhpRSlGgVSzJoFkdAp4QbFCLMtHV9lChoBmgJaA9DCP7w89+DF/G/lIaUUpRoFUsyaBZHQKeD3C5VfeF1fZQoaAZoCWgPQwgk0csoltvzv5SGlFKUaBVLMmgWR0Cng57YK6WgdX2UKGgGaAloD0MIPWL03ELX77+UhpRSlGgVSzJoFkdAp4NgZ88cMnV9lChoBmgJaA9DCO5gxD4BVPW/lIaUUpRoFUsyaBZHQKeFPFEy+Ht1fZQoaAZoCWgPQwh1BHCzeLHjv5SGlFKUaBVLMmgWR0CnhP1VPva2dX2UKGgGaAloD0MInl4pyxDH7b+UhpRSlGgVSzJoFkdAp4S/2GqPwXV9lChoBmgJaA9DCFfqWRDK++a/lIaUUpRoFUsyaBZHQKeEgTzND+l1fZQoaAZoCWgPQwgk0jb+RGXov5SGlFKUaBVLMmgWR0CnhlpEQXhwdX2UKGgGaAloD0MIhnXj3ZGx9b+UhpRSlGgVSzJoFkdAp4YbQE6kqXV9lChoBmgJaA9DCDdQ4J18+u6/lIaUUpRoFUsyaBZHQKeF3cW0qpd1fZQoaAZoCWgPQwiyutVz0nvnv5SGlFKUaBVLMmgWR0CnhZ9QoCuEdX2UKGgGaAloD0MIYthhTPr7/b+UhpRSlGgVSzJoFkdAp4dxj2BatHV9lChoBmgJaA9DCNsX0At3rvi/lIaUUpRoFUsyaBZHQKeHMqUeMhp1fZQoaAZoCWgPQwgm/ijqzL3qv5SGlFKUaBVLMmgWR0CnhvUojOcEdX2UKGgGaAloD0MIHlTiOsZV9L+UhpRSlGgVSzJoFkdAp4a2v0RODnV9lChoBmgJaA9DCOC593DJsfe/lIaUUpRoFUsyaBZHQKeIiiHIp6R1fZQoaAZoCWgPQwh+i06WWm/sv5SGlFKUaBVLMmgWR0CniEto8IRidX2UKGgGaAloD0MIuk24V+at7L+UhpRSlGgVSzJoFkdAp4gODYh+v3V9lChoBmgJaA9DCH7ja88sCfK/lIaUUpRoFUsyaBZHQKeHz9oexOd1fZQoaAZoCWgPQwh2NA71uzD/v5SGlFKUaBVLMmgWR0CniaLtE5QxdX2UKGgGaAloD0MIr+3tluQA8b+UhpRSlGgVSzJoFkdAp4lj/ffoBHV9lChoBmgJaA9DCJdUbTfBN/W/lIaUUpRoFUsyaBZHQKeJJrftQbd1fZQoaAZoCWgPQwj03a0s0dntv5SGlFKUaBVLMmgWR0CniOgoG6f8dX2UKGgGaAloD0MIDD84nzoW9r+UhpRSlGgVSzJoFkdAp4rJjOLR8nV9lChoBmgJaA9DCDtwzojS3u2/lIaUUpRoFUsyaBZHQKeKipQ1rIp1fZQoaAZoCWgPQwh/wAMDCN/5v5SGlFKUaBVLMmgWR0Cnik1QhwERdX2UKGgGaAloD0MIEaj+QSTD6L+UhpRSlGgVSzJoFkdAp4oO4qgAZXV9lChoBmgJaA9DCMprJXSXBPS/lIaUUpRoFUsyaBZHQKeL2WKMvRJ1fZQoaAZoCWgPQwiELAsm/qjkv5SGlFKUaBVLMmgWR0Cni5pl8PWhdX2UKGgGaAloD0MIDeAtkKB4+r+UhpRSlGgVSzJoFkdAp4tdAiV0LnV9lChoBmgJaA9DCPmGwmfrYO6/lIaUUpRoFUsyaBZHQKeLHm4iHIp1fZQoaAZoCWgPQwg8EcR5OAHjv5SGlFKUaBVLMmgWR0CnjPUW/JvHdX2UKGgGaAloD0MI+WpHcY666b+UhpRSlGgVSzJoFkdAp4y2GM4tH3V9lChoBmgJaA9DCCTVd35RQvC/lIaUUpRoFUsyaBZHQKeMeIMz/Id1fZQoaAZoCWgPQwi+huC4jJvsv5SGlFKUaBVLMmgWR0CnjDnRTjvNdX2UKGgGaAloD0MIVoMwt3u5+7+UhpRSlGgVSzJoFkdAp44Sd4FA3XV9lChoBmgJaA9DCJnxttJrM+u/lIaUUpRoFUsyaBZHQKeN05Ke05V1fZQoaAZoCWgPQwg8SiU8oZf0v5SGlFKUaBVLMmgWR0CnjZYGlhw3dX2UKGgGaAloD0MIBRkBFY4g9L+UhpRSlGgVSzJoFkdAp41XnQpnYnV9lChoBmgJaA9DCHaqfM9IBOq/lIaUUpRoFUsyaBZHQKePJQGfPHF1fZQoaAZoCWgPQwh/T6xT5Xv4v5SGlFKUaBVLMmgWR0CnjuYHPeHjdX2UKGgGaAloD0MIuECC4scY97+UhpRSlGgVSzJoFkdAp46onc+JQHV9lChoBmgJaA9DCBjNyvYh7++/lIaUUpRoFUsyaBZHQKeOahwEQoV1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01bd61c5f40fc6e2230763e8e7284999894ddea7c0dd34002af5dacac4281787
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92a64f6f00f812b874bad8a89ef3207c9a0038896c5d6fd4521f40c51da68a5e
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcb2314ae50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcb230ce640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679903116707813850, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnIy8PpVT5TyNkxI/nIy8PpVT5TyNkxI/nIy8PpVT5TyNkxI/nIy8PpVT5TyNkxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAH07ev5uDTD8RPQI/mDzVP8OY2z+4K5M/zv2Tvf1/oL+CxtY/nexOP2HPQT708JU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACcjLw+lVPlPI2TEj+Se9I79guJO6H0BbucjLw+lVPlPI2TEj+Se9I79guJO6H0BbucjLw+lVPlPI2TEj+Se9I79guJO6H0BbucjLw+lVPlPI2TEj+Se9I79guJO6H0BbuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.36826026 0.02799396 0.57256395]\n [0.36826026 0.02799396 0.57256395]\n [0.36826026 0.02799396 0.57256395]\n [0.36826026 0.02799396 0.57256395]]", "desired_goal": "[[-1.7367591 0.79888314 0.5087443 ]\n [ 1.6659117 1.7155994 1.1497717 ]\n [-0.07226144 -1.2539059 1.677933 ]\n [ 0.80829793 0.18926765 1.1714158 ]]", "observation": "[[ 0.36826026 0.02799396 0.57256395 0.00642342 0.00418233 -0.002044 ]\n [ 0.36826026 0.02799396 0.57256395 0.00642342 0.00418233 -0.002044 ]\n [ 0.36826026 0.02799396 0.57256395 0.00642342 0.00418233 -0.002044 ]\n [ 0.36826026 0.02799396 0.57256395 0.00642342 0.00418233 -0.002044 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/eAMPu1dAz7CBIc+3gsNPTkxCb1ckYQ+kQUVvv86072ZyUg+Zl76PJMlYzxzjYU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13757701 0.12828799 0.26370817]\n [ 0.03443515 -0.03349421 0.2589215 ]\n [-0.14552905 -0.10313987 0.19608153]\n [ 0.03056259 0.01386394 0.0652112 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYto391cP6r+UhpRSlIwBbJRLMowBdJRHQKdwR9/jKgZ1fZQoaAZoCWgPQwiG4/kMqDfmv5SGlFKUaBVLMmgWR0CncAjs2NvPdX2UKGgGaAloD0MIXHSy1Hq/5r+UhpRSlGgVSzJoFkdAp2/LfgrH2nV9lChoBmgJaA9DCBoVONkG7ua/lIaUUpRoFUsyaBZHQKdvjQb+98J1fZQoaAZoCWgPQwijWG5pNST4v5SGlFKUaBVLMmgWR0CncWH+IdlvdX2UKGgGaAloD0MIr3rAPGTK6b+UhpRSlGgVSzJoFkdAp3Ei/GlyinV9lChoBmgJaA9DCOolxjL9EvC/lIaUUpRoFUsyaBZHQKdw5dLxqfx1fZQoaAZoCWgPQwgkXwmkxG7xv5SGlFKUaBVLMmgWR0CncKdM9KVZdX2UKGgGaAloD0MIw4AlV7H42L+UhpRSlGgVSzJoFkdAp3J+8CgbqHV9lChoBmgJaA9DCCC3Xz5ZMfq/lIaUUpRoFUsyaBZHQKdyQALApKB1fZQoaAZoCWgPQwh9eJYgI6Dzv5SGlFKUaBVLMmgWR0CncgKZtvXLdX2UKGgGaAloD0MI3CxeLAyR5L+UhpRSlGgVSzJoFkdAp3HEJdB0IXV9lChoBmgJaA9DCB8OEqJ8Qeq/lIaUUpRoFUsyaBZHQKdzopOvdM11fZQoaAZoCWgPQwj8OJojK7/tv5SGlFKUaBVLMmgWR0Cnc2PMr3CbdX2UKGgGaAloD0MI9IsS9Bf64L+UhpRSlGgVSzJoFkdAp3MmTFERa3V9lChoBmgJaA9DCBH8byU7tue/lIaUUpRoFUsyaBZHQKdy58uSOip1fZQoaAZoCWgPQwjiWBe30UDzv5SGlFKUaBVLMmgWR0CndPRTCLuQdX2UKGgGaAloD0MIHsNjP4ul67+UhpRSlGgVSzJoFkdAp3S2IAOrhnV9lChoBmgJaA9DCDEm/b0UnuC/lIaUUpRoFUsyaBZHQKd0eZR8+id1fZQoaAZoCWgPQwhXz0nvGx/zv5SGlFKUaBVLMmgWR0CndDv/BFd+dX2UKGgGaAloD0MILzNslPUb9r+UhpRSlGgVSzJoFkdAp3bGp++dsnV9lChoBmgJaA9DCG6l12ZjJdi/lIaUUpRoFUsyaBZHQKd2iE4ecQR1fZQoaAZoCWgPQwi+iLZj6i7mv5SGlFKUaBVLMmgWR0Cndku3c580dX2UKGgGaAloD0MI4IJsWb4u5L+UhpRSlGgVSzJoFkdAp3YOSpzcRHV9lChoBmgJaA9DCPQZUG9GTe2/lIaUUpRoFUsyaBZHQKd4kZ2IO6N1fZQoaAZoCWgPQwj0/dR46Sbhv5SGlFKUaBVLMmgWR0CneFOTaCcxdX2UKGgGaAloD0MIBHCzeLGw57+UhpRSlGgVSzJoFkdAp3gXGACnxnV9lChoBmgJaA9DCFvSUQ5mU/C/lIaUUpRoFUsyaBZHQKd32flp48l1fZQoaAZoCWgPQwiq0hbX+Mzov5SGlFKUaBVLMmgWR0Cnemkb5uZUdX2UKGgGaAloD0MIL/oK0oxF7b+UhpRSlGgVSzJoFkdAp3orMTviLnV9lChoBmgJaA9DCFopBHKJo+y/lIaUUpRoFUsyaBZHQKd57pCa7Vd1fZQoaAZoCWgPQwhpc5zbhPvtv5SGlFKUaBVLMmgWR0CnebEidJ8OdX2UKGgGaAloD0MIVDasqSyK7b+UhpRSlGgVSzJoFkdAp3xpOpKjBXV9lChoBmgJaA9DCJ92+GuyhvC/lIaUUpRoFUsyaBZHQKd8Kylenht1fZQoaAZoCWgPQwjMYfcdw+Piv5SGlFKUaBVLMmgWR0Cne+6Hj6vadX2UKGgGaAloD0MIY9LfS+FB17+UhpRSlGgVSzJoFkdAp3uxCfHxSnV9lChoBmgJaA9DCDPd66S+LPG/lIaUUpRoFUsyaBZHQKd+Z0h/y5J1fZQoaAZoCWgPQwh9JCU9DK3sv5SGlFKUaBVLMmgWR0CnfikqlP8AdX2UKGgGaAloD0MIyRzLu+rB9L+UhpRSlGgVSzJoFkdAp33suHvc8HV9lChoBmgJaA9DCEs+dhcoKdu/lIaUUpRoFUsyaBZHQKd9ry1eBxx1fZQoaAZoCWgPQwis5c5MMJz0v5SGlFKUaBVLMmgWR0Cnf5onBtUGdX2UKGgGaAloD0MIeuI5W0Bo4b+UhpRSlGgVSzJoFkdAp39bSG8Em3V9lChoBmgJaA9DCDnyQGSRJuy/lIaUUpRoFUsyaBZHQKd/HeQdS2p1fZQoaAZoCWgPQwhAw5s1eF/pv5SGlFKUaBVLMmgWR0Cnft+D3/PxdX2UKGgGaAloD0MIl3X/WIiO6L+UhpRSlGgVSzJoFkdAp4DPQyAQQXV9lChoBmgJaA9DCI1iuaXVEOS/lIaUUpRoFUsyaBZHQKeAkF10T111fZQoaAZoCWgPQwjtt3aiJCTgv5SGlFKUaBVLMmgWR0CngFMYuTRqdX2UKGgGaAloD0MI0H8PXru08b+UhpRSlGgVSzJoFkdAp4AUx0uDjHV9lChoBmgJaA9DCIqPT8jOG/2/lIaUUpRoFUsyaBZHQKeB6PGyX2N1fZQoaAZoCWgPQwiHTWTmApfzv5SGlFKUaBVLMmgWR0CngaoatLcsdX2UKGgGaAloD0MIeCefHtuy7r+UhpRSlGgVSzJoFkdAp4Fsmnfl63V9lChoBmgJaA9DCAZjRKLQsua/lIaUUpRoFUsyaBZHQKeBLhYvFm51fZQoaAZoCWgPQwiUoSqm0k/wv5SGlFKUaBVLMmgWR0Cngv7z06HTdX2UKGgGaAloD0MIZaiKqfQT37+UhpRSlGgVSzJoFkdAp4K//aQFLXV9lChoBmgJaA9DCA3H8xlQb/G/lIaUUpRoFUsyaBZHQKeCgood+5R1fZQoaAZoCWgPQwgo0v2cgnz0v5SGlFKUaBVLMmgWR0CngkQaaTfSdX2UKGgGaAloD0MINNb+zvao8r+UhpRSlGgVSzJoFkdAp4QbFCLMtHV9lChoBmgJaA9DCP7w89+DF/G/lIaUUpRoFUsyaBZHQKeD3C5VfeF1fZQoaAZoCWgPQwgk0csoltvzv5SGlFKUaBVLMmgWR0Cng57YK6WgdX2UKGgGaAloD0MIPWL03ELX77+UhpRSlGgVSzJoFkdAp4NgZ88cMnV9lChoBmgJaA9DCO5gxD4BVPW/lIaUUpRoFUsyaBZHQKeFPFEy+Ht1fZQoaAZoCWgPQwh1BHCzeLHjv5SGlFKUaBVLMmgWR0CnhP1VPva2dX2UKGgGaAloD0MInl4pyxDH7b+UhpRSlGgVSzJoFkdAp4S/2GqPwXV9lChoBmgJaA9DCFfqWRDK++a/lIaUUpRoFUsyaBZHQKeEgTzND+l1fZQoaAZoCWgPQwgk0jb+RGXov5SGlFKUaBVLMmgWR0CnhlpEQXhwdX2UKGgGaAloD0MIhnXj3ZGx9b+UhpRSlGgVSzJoFkdAp4YbQE6kqXV9lChoBmgJaA9DCDdQ4J18+u6/lIaUUpRoFUsyaBZHQKeF3cW0qpd1fZQoaAZoCWgPQwiyutVz0nvnv5SGlFKUaBVLMmgWR0CnhZ9QoCuEdX2UKGgGaAloD0MIYthhTPr7/b+UhpRSlGgVSzJoFkdAp4dxj2BatHV9lChoBmgJaA9DCNsX0At3rvi/lIaUUpRoFUsyaBZHQKeHMqUeMhp1fZQoaAZoCWgPQwgm/ijqzL3qv5SGlFKUaBVLMmgWR0CnhvUojOcEdX2UKGgGaAloD0MIHlTiOsZV9L+UhpRSlGgVSzJoFkdAp4a2v0RODnV9lChoBmgJaA9DCOC593DJsfe/lIaUUpRoFUsyaBZHQKeIiiHIp6R1fZQoaAZoCWgPQwh+i06WWm/sv5SGlFKUaBVLMmgWR0CniEto8IRidX2UKGgGaAloD0MIuk24V+at7L+UhpRSlGgVSzJoFkdAp4gODYh+v3V9lChoBmgJaA9DCH7ja88sCfK/lIaUUpRoFUsyaBZHQKeHz9oexOd1fZQoaAZoCWgPQwh2NA71uzD/v5SGlFKUaBVLMmgWR0CniaLtE5QxdX2UKGgGaAloD0MIr+3tluQA8b+UhpRSlGgVSzJoFkdAp4lj/ffoBHV9lChoBmgJaA9DCJdUbTfBN/W/lIaUUpRoFUsyaBZHQKeJJrftQbd1fZQoaAZoCWgPQwj03a0s0dntv5SGlFKUaBVLMmgWR0CniOgoG6f8dX2UKGgGaAloD0MIDD84nzoW9r+UhpRSlGgVSzJoFkdAp4rJjOLR8nV9lChoBmgJaA9DCDtwzojS3u2/lIaUUpRoFUsyaBZHQKeKipQ1rIp1fZQoaAZoCWgPQwh/wAMDCN/5v5SGlFKUaBVLMmgWR0Cnik1QhwERdX2UKGgGaAloD0MIEaj+QSTD6L+UhpRSlGgVSzJoFkdAp4oO4qgAZXV9lChoBmgJaA9DCMprJXSXBPS/lIaUUpRoFUsyaBZHQKeL2WKMvRJ1fZQoaAZoCWgPQwiELAsm/qjkv5SGlFKUaBVLMmgWR0Cni5pl8PWhdX2UKGgGaAloD0MIDeAtkKB4+r+UhpRSlGgVSzJoFkdAp4tdAiV0LnV9lChoBmgJaA9DCPmGwmfrYO6/lIaUUpRoFUsyaBZHQKeLHm4iHIp1fZQoaAZoCWgPQwg8EcR5OAHjv5SGlFKUaBVLMmgWR0CnjPUW/JvHdX2UKGgGaAloD0MI+WpHcY666b+UhpRSlGgVSzJoFkdAp4y2GM4tH3V9lChoBmgJaA9DCCTVd35RQvC/lIaUUpRoFUsyaBZHQKeMeIMz/Id1fZQoaAZoCWgPQwi+huC4jJvsv5SGlFKUaBVLMmgWR0CnjDnRTjvNdX2UKGgGaAloD0MIVoMwt3u5+7+UhpRSlGgVSzJoFkdAp44Sd4FA3XV9lChoBmgJaA9DCJnxttJrM+u/lIaUUpRoFUsyaBZHQKeN05Ke05V1fZQoaAZoCWgPQwg8SiU8oZf0v5SGlFKUaBVLMmgWR0CnjZYGlhw3dX2UKGgGaAloD0MIBRkBFY4g9L+UhpRSlGgVSzJoFkdAp41XnQpnYnV9lChoBmgJaA9DCHaqfM9IBOq/lIaUUpRoFUsyaBZHQKePJQGfPHF1fZQoaAZoCWgPQwh/T6xT5Xv4v5SGlFKUaBVLMmgWR0CnjuYHPeHjdX2UKGgGaAloD0MIuECC4scY97+UhpRSlGgVSzJoFkdAp46onc+JQHV9lChoBmgJaA9DCBjNyvYh7++/lIaUUpRoFUsyaBZHQKeOahwEQoV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (500 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.2581615531817079, "std_reward": 0.24382712367852222, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-27T08:36:40.354329"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e9cdb0ef96d5758ea603ab5bc87b326cc571929c017b72db7eba38c37ea0f6a
|
3 |
+
size 3056
|