File size: 8,484 Bytes
fe781a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import dataclasses
import glob
import importlib
import random
import numpy as np
import torch
import warnings
import os
import time
import torch.utils.tensorboard as tensorboard
from torch import distributed as dist
import sys
import yaml
import json
import re
import pathlib
import matplotlib
matplotlib.use("Agg")
import matplotlib.pylab as plt


def plot_spectrogram(spectrogram):
    fig, ax = plt.subplots(figsize=(10, 2))
    im = ax.imshow(spectrogram, aspect="auto", origin="lower",
                   interpolation='none')
    plt.colorbar(im, ax=ax)

    fig.canvas.draw()
    plt.close()

    return fig


def seed_everything(seed, cudnn_deterministic=False):
    """
    Function that sets seed for pseudo-random number generators in:
    pytorch, numpy, python.random
    
    Args:
        seed: the integer value seed for global random state
    """
    if seed is not None:
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)

    if cudnn_deterministic:
        torch.backends.cudnn.deterministic = True
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

def is_primary():
    return get_rank() == 0


def get_rank():
    if not dist.is_available():
        return 0
    if not dist.is_initialized():
        return 0

    return dist.get_rank()


def load_yaml_config(path):
    with open(path) as f:
        config = yaml.full_load(f)
    return config


def save_config_to_yaml(config, path):
    assert path.endswith('.yaml')
    with open(path, 'w') as f:
        f.write(yaml.dump(config))
        f.close()


def save_dict_to_json(d, path, indent=None):
    json.dump(d, open(path, 'w'), indent=indent)


def load_dict_from_json(path):
    return json.load(open(path, 'r'))


def write_args(args, path):
    args_dict = dict((name, getattr(args, name)) for name in dir(args)if not name.startswith('_'))
    with open(path, 'a') as args_file:
        args_file.write('==> torch version: {}\n'.format(torch.__version__))
        args_file.write('==> cudnn version: {}\n'.format(torch.backends.cudnn.version()))
        args_file.write('==> Cmd:\n')
        args_file.write(str(sys.argv))
        args_file.write('\n==> args:\n')
        for k, v in sorted(args_dict.items()):
            args_file.write('  %s: %s\n' % (str(k), str(v)))
        args_file.close()


class Logger(object):
    def __init__(self, args):
        self.args = args
        self.save_dir = args.log_dir
        self.is_primary = is_primary()
        
        if self.is_primary:
            os.makedirs(self.save_dir, exist_ok=True)
            
            # save the args and config
            self.config_dir = os.path.join(self.save_dir, 'configs')
            os.makedirs(self.config_dir, exist_ok=True)
            file_name = os.path.join(self.config_dir, 'args.txt')
            write_args(args, file_name)

            log_dir = os.path.join(self.save_dir, 'logs')
            if not os.path.exists(log_dir):
                os.makedirs(log_dir, exist_ok=True)
            self.text_writer = open(os.path.join(log_dir, 'log.txt'), 'a') # 'w')
            if args.tensorboard:
                self.log_info('using tensorboard')
                self.tb_writer = torch.utils.tensorboard.SummaryWriter(log_dir=log_dir) # tensorboard.SummaryWriter(log_dir=log_dir)
            else:
                self.tb_writer = None

    def save_config(self, config):
        if self.is_primary:
            save_config_to_yaml(config, os.path.join(self.config_dir, 'config.yaml'))

    def log_info(self, info, check_primary=True):
        if self.is_primary or (not check_primary):
            print(info)
            if self.is_primary:
                info = str(info)
                time_str = time.strftime('%Y-%m-%d-%H-%M')
                info = '{}: {}'.format(time_str, info)
                if not info.endswith('\n'):
                    info += '\n'
                self.text_writer.write(info)
                self.text_writer.flush()

    def add_scalar(self, **kargs):
        """Log a scalar variable."""
        if self.is_primary:
            if self.tb_writer is not None:
                self.tb_writer.add_scalar(**kargs)

    def add_scalars(self, **kargs):
        """Log a scalar variable."""
        if self.is_primary:
            if self.tb_writer is not None:
                self.tb_writer.add_scalars(**kargs)

    def add_image(self, **kargs):
        """Log a scalar variable."""
        if self.is_primary:
            if self.tb_writer is not None:
                self.tb_writer.add_image(**kargs)

    def add_images(self, **kargs):
        """Log a scalar variable."""
        if self.is_primary:
            if self.tb_writer is not None:
                self.tb_writer.add_images(**kargs)

    def close(self):
        if self.is_primary:
            self.text_writer.close()
            self.tb_writer.close()


def cal_model_size(model, name=""):

    all_size = sum(p.numel() for p in model.parameters())/1024.0/1024.0
    return f'Model size of {name}: {all_size:.3f} MB'

    param_size = 0
    param_sum = 0
    for param in model.parameters():
        param_size += param.nelement() * param.element_size()
        param_sum += param.nelement()
    buffer_size = 0
    buffer_sum = 0
    for buffer in model.buffers():
        buffer_size += buffer.nelement() * buffer.element_size()
        buffer_sum += buffer.nelement()
    all_size = (param_size + buffer_size) / 1024 / 1024

    return f'Model size of {name}: {all_size:.3f} MB'
    # print(f'Model size of {name}: {all_size:.3f}MB')
    # return (param_size, param_sum, buffer_size, buffer_sum, all_size)


def load_obj(obj_path: str, default_obj_path: str = ''):
    """ Extract an object from a given path.
    Args:
        obj_path: Path to an object to be extracted, including the object name.
            e.g.: `src.trainers.meta_trainer.MetaTrainer`
                  `src.models.ada_style_speech.AdaStyleSpeechModel`
        default_obj_path: Default object path.
    
    Returns:
        Extracted object.
    Raises:
        AttributeError: When the object does not have the given named attribute.
    
    """
    obj_path_list = obj_path.rsplit('.', 1)
    obj_path = obj_path_list.pop(0) if len(obj_path_list) > 1 else default_obj_path
    obj_name = obj_path_list[0]
    module_obj = importlib.import_module(obj_path)
    if not hasattr(module_obj, obj_name):
        raise AttributeError(f'Object `{obj_name}` cannot be loaded from `{obj_path}`.')
    return getattr(module_obj, obj_name)


def to_device(data, device=None, dtype=None, non_blocking=False, copy=False):
    """Change the device of object recursively"""
    if isinstance(data, dict):
        return {
            k: to_device(v, device, dtype, non_blocking, copy) for k, v in data.items()
        }
    elif dataclasses.is_dataclass(data) and not isinstance(data, type):
        return type(data)(
            *[
                to_device(v, device, dtype, non_blocking, copy)
                for v in dataclasses.astuple(data)
            ]
        )
    # maybe namedtuple. I don't know the correct way to judge namedtuple.
    elif isinstance(data, tuple) and type(data) is not tuple:
        return type(data)(
            *[to_device(o, device, dtype, non_blocking, copy) for o in data]
        )
    elif isinstance(data, (list, tuple)):
        return type(data)(to_device(v, device, dtype, non_blocking, copy) for v in data)
    elif isinstance(data, np.ndarray):
        return to_device(torch.from_numpy(data), device, dtype, non_blocking, copy)
    elif isinstance(data, torch.Tensor):
        return data.to(device, dtype, non_blocking, copy)
    else:
        return data


def save_checkpoint(filepath, obj, ext='pth', num_ckpt_keep=10):
    ckpts = sorted(pathlib.Path(filepath).parent.glob(f'*.{ext}'))
    if len(ckpts) > num_ckpt_keep:
        [os.remove(c) for c in ckpts[:-num_ckpt_keep]]
    torch.save(obj, filepath)


def scan_checkpoint(cp_dir, prefix='ckpt_'):
    pattern = os.path.join(cp_dir, prefix + '????????.pth')
    cp_list = glob.glob(pattern)
    if len(cp_list) == 0:
        return None
    return sorted(cp_list)[-1]