|
from typing import Optional |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn.utils import weight_norm |
|
|
|
from vocos.modules import ConvNeXtBlock, ResBlock1, AdaLayerNorm |
|
|
|
|
|
class Backbone(nn.Module): |
|
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers.""" |
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: |
|
""" |
|
Args: |
|
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size, |
|
C denotes output features, and L is the sequence length. |
|
|
|
Returns: |
|
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length, |
|
and H denotes the model dimension. |
|
""" |
|
raise NotImplementedError("Subclasses must implement the forward method.") |
|
|
|
|
|
class VocosBackbone(Backbone): |
|
""" |
|
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization |
|
|
|
Args: |
|
input_channels (int): Number of input features channels. |
|
dim (int): Hidden dimension of the model. |
|
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. |
|
num_layers (int): Number of ConvNeXtBlock layers. |
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. |
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. |
|
None means non-conditional model. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_channels: int, |
|
dim: int, |
|
intermediate_dim: int, |
|
num_layers: int, |
|
layer_scale_init_value: Optional[float] = None, |
|
adanorm_num_embeddings: Optional[int] = None, |
|
ckpt: Optional[str] = None, |
|
): |
|
super().__init__() |
|
self.input_channels = input_channels |
|
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3) |
|
self.adanorm = adanorm_num_embeddings is not None |
|
if adanorm_num_embeddings: |
|
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6) |
|
else: |
|
self.norm = nn.LayerNorm(dim, eps=1e-6) |
|
layer_scale_init_value = layer_scale_init_value or 1 / num_layers |
|
self.convnext = nn.ModuleList( |
|
[ |
|
ConvNeXtBlock( |
|
dim=dim, |
|
intermediate_dim=intermediate_dim, |
|
layer_scale_init_value=layer_scale_init_value, |
|
adanorm_num_embeddings=adanorm_num_embeddings, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6) |
|
|
|
if ckpt is not None: |
|
state_dict = torch.load(ckpt, map_location='cpu') |
|
state_dict = self._fuzzy_load_state_dict(state_dict) |
|
self.load_state_dict(state_dict) |
|
self.apply(self._init_weights) |
|
|
|
def _fuzzy_load_state_dict(self, state_dict): |
|
def _get_key(key): |
|
return key.split('backbone.')[-1] |
|
|
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
if k.startswith('backbone'): |
|
if v.shape == self.state_dict()[_get_key(k)].shape: |
|
new_state_dict[_get_key(k)] = v |
|
else: |
|
new_state_dict[_get_key(k)] = self.state_dict()[_get_key(k)] |
|
nn.init.trunc_normal_(new_state_dict[_get_key(k)], std=0.02) |
|
nn.init.constant_(new_state_dict[_get_key(k)], 0) |
|
return new_state_dict |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv1d, nn.Linear)): |
|
nn.init.trunc_normal_(m.weight, std=0.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: |
|
bandwidth_id = kwargs.get('bandwidth_id', None) |
|
x = self.embed(x) |
|
if self.adanorm: |
|
assert bandwidth_id is not None |
|
x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id) |
|
else: |
|
x = self.norm(x.transpose(1, 2)) |
|
x = x.transpose(1, 2) |
|
for conv_block in self.convnext: |
|
x = conv_block(x, cond_embedding_id=bandwidth_id) |
|
x = self.final_layer_norm(x.transpose(1, 2)) |
|
return x |
|
|
|
|
|
class VocosResNetBackbone(Backbone): |
|
""" |
|
Vocos backbone module built with ResBlocks. |
|
|
|
Args: |
|
input_channels (int): Number of input features channels. |
|
dim (int): Hidden dimension of the model. |
|
num_blocks (int): Number of ResBlock1 blocks. |
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, input_channels, dim, num_blocks, layer_scale_init_value=None, |
|
): |
|
super().__init__() |
|
self.input_channels = input_channels |
|
self.embed = weight_norm(nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)) |
|
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3 |
|
self.resnet = nn.Sequential( |
|
*[ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) for _ in range(num_blocks)] |
|
) |
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: |
|
x = self.embed(x) |
|
x = self.resnet(x) |
|
x = x.transpose(1, 2) |
|
return x |
|
|
|
if __name__ == '__main__': |
|
|
|
model = VocosBackbone( |
|
input_channels=1024, |
|
dim=512, |
|
intermediate_dim=1536, |
|
num_layers=8, |
|
ckpt="/root/OpenMusicVoco/vocos/pretrained.pth" |
|
) |
|
|
|
|
|
x = torch.randn(2, 1024, 100) |
|
|
|
|
|
output = model(x) |
|
print(output.shape) |