jaong commited on
Commit
7416041
1 Parent(s): 844f7c3

Upload 12 files

Browse files
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "train_loss": 0.4479398911550831,
4
+ "train_runtime": 64358.151,
5
+ "train_samples": 3290,
6
+ "train_samples_per_second": 0.511,
7
+ "train_steps_per_second": 0.085
8
+ }
cmd.txt ADDED
@@ -0,0 +1,467 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Microsoft Windows [版本 10.0.19045.4170]
2
+ (c) Microsoft Corporation。保留所有权利。
3
+
4
+ C:\Users\Lenovo>cd C:\Users\Lenovo\Desktop\wxy\CPT-master\finetune\generation
5
+
6
+ C:\Users\Lenovo\Desktop\wxy\CPT-master\finetune\generation>python run_gen.py --model_path C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d --dataset adgen --data_dir demo_data
7
+ train
8
+ validation
9
+ test
10
+ 03/22/2024 09:51:20 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
11
+ 03/22/2024 09:51:20 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments(
12
+ _n_gpu=1,
13
+ accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True},
14
+ adafactor=False,
15
+ adam_beta1=0.9,
16
+ adam_beta2=0.999,
17
+ adam_epsilon=1e-08,
18
+ auto_find_batch_size=False,
19
+ bf16=False,
20
+ bf16_full_eval=False,
21
+ data_seed=None,
22
+ dataloader_drop_last=False,
23
+ dataloader_num_workers=0,
24
+ dataloader_persistent_workers=False,
25
+ dataloader_pin_memory=True,
26
+ dataloader_prefetch_factor=None,
27
+ ddp_backend=None,
28
+ ddp_broadcast_buffers=None,
29
+ ddp_bucket_cap_mb=None,
30
+ ddp_find_unused_parameters=None,
31
+ ddp_timeout=1800,
32
+ debug=[],
33
+ deepspeed=None,
34
+ disable_tqdm=False,
35
+ dispatch_batches=None,
36
+ do_eval=True,
37
+ do_predict=True,
38
+ do_train=True,
39
+ eval_accumulation_steps=None,
40
+ eval_delay=0,
41
+ eval_steps=None,
42
+ evaluation_strategy=epoch,
43
+ fp16=False,
44
+ fp16_backend=auto,
45
+ fp16_full_eval=False,
46
+ fp16_opt_level=O1,
47
+ fsdp=[],
48
+ fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
49
+ fsdp_min_num_params=0,
50
+ fsdp_transformer_layer_cls_to_wrap=None,
51
+ full_determinism=False,
52
+ generation_config=None,
53
+ generation_max_length=None,
54
+ generation_num_beams=None,
55
+ gradient_accumulation_steps=1,
56
+ gradient_checkpointing=False,
57
+ gradient_checkpointing_kwargs=None,
58
+ greater_is_better=None,
59
+ group_by_length=False,
60
+ half_precision_backend=auto,
61
+ hub_always_push=False,
62
+ hub_model_id=None,
63
+ hub_private_repo=False,
64
+ hub_strategy=every_save,
65
+ hub_token=<HUB_TOKEN>,
66
+ ignore_data_skip=False,
67
+ include_inputs_for_metrics=False,
68
+ include_num_input_tokens_seen=False,
69
+ include_tokens_per_second=False,
70
+ jit_mode_eval=False,
71
+ label_names=None,
72
+ label_smoothing_factor=0.0,
73
+ learning_rate=2e-05,
74
+ length_column_name=length,
75
+ load_best_model_at_end=False,
76
+ local_rank=0,
77
+ log_level=passive,
78
+ log_level_replica=warning,
79
+ log_on_each_node=True,
80
+ logging_dir=output/adgen/6\runs\Mar22_09-51-19_DESKTOP-PC6Q6P1,
81
+ logging_first_step=False,
82
+ logging_nan_inf_filter=True,
83
+ logging_steps=500,
84
+ logging_strategy=steps,
85
+ lr_scheduler_kwargs={},
86
+ lr_scheduler_type=linear,
87
+ max_grad_norm=1.0,
88
+ max_steps=-1,
89
+ metric_for_best_model=None,
90
+ mp_parameters=,
91
+ neftune_noise_alpha=None,
92
+ no_cuda=False,
93
+ num_train_epochs=10.0,
94
+ optim=adamw_torch,
95
+ optim_args=None,
96
+ output_dir=output/adgen/6,
97
+ overwrite_output_dir=True,
98
+ past_index=-1,
99
+ per_device_eval_batch_size=6,
100
+ per_device_train_batch_size=6,
101
+ predict_with_generate=True,
102
+ prediction_loss_only=False,
103
+ push_to_hub=False,
104
+ push_to_hub_model_id=None,
105
+ push_to_hub_organization=None,
106
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
107
+ ray_scope=last,
108
+ remove_unused_columns=True,
109
+ report_to=[],
110
+ resume_from_checkpoint=None,
111
+ run_name=output/adgen/6,
112
+ save_on_each_node=False,
113
+ save_only_model=False,
114
+ save_safetensors=True,
115
+ save_steps=500,
116
+ save_strategy=no,
117
+ save_total_limit=None,
118
+ seed=6000,
119
+ skip_memory_metrics=True,
120
+ sortish_sampler=False,
121
+ split_batches=None,
122
+ tf32=None,
123
+ torch_compile=False,
124
+ torch_compile_backend=None,
125
+ torch_compile_mode=None,
126
+ torchdynamo=None,
127
+ tpu_metrics_debug=False,
128
+ tpu_num_cores=None,
129
+ use_cpu=False,
130
+ use_ipex=False,
131
+ use_legacy_prediction_loop=False,
132
+ use_mps_device=False,
133
+ warmup_ratio=0.0,
134
+ warmup_steps=0,
135
+ weight_decay=0.0,
136
+ )
137
+ loading file vocab.txt
138
+ loading file added_tokens.json
139
+ loading file special_tokens_map.json
140
+ loading file tokenizer_config.json
141
+ loading file tokenizer.json
142
+ loading configuration file C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d\config.json
143
+ Model config BartConfig {
144
+ "_name_or_path": "C:\\Users\\Lenovo\\.cache\\huggingface\\hub\\models--fnlp--cpt-large\\snapshots\\f07323ad5818364d47fc17cc4088072cd2f5f46d",
145
+ "activation_dropout": 0.1,
146
+ "activation_function": "gelu",
147
+ "add_bias_logits": false,
148
+ "add_final_layer_norm": false,
149
+ "architectures": [
150
+ "BartForConditionalGeneration"
151
+ ],
152
+ "attention_dropout": 0.1,
153
+ "bos_token_id": 101,
154
+ "classif_dropout": 0.1,
155
+ "classifier_dropout": 0.0,
156
+ "d_model": 1024,
157
+ "decoder_attention_heads": 16,
158
+ "decoder_ffn_dim": 4096,
159
+ "decoder_layerdrop": 0.0,
160
+ "decoder_layers": 4,
161
+ "decoder_start_token_id": 102,
162
+ "dropout": 0.1,
163
+ "early_stopping": true,
164
+ "encoder_attention_heads": 16,
165
+ "encoder_ffn_dim": 4096,
166
+ "encoder_layerdrop": 0.0,
167
+ "encoder_layers": 24,
168
+ "eos_token_id": 102,
169
+ "forced_eos_token_id": 102,
170
+ "gradient_checkpointing": false,
171
+ "id2label": {
172
+ "0": "LABEL_0",
173
+ "1": "LABEL_1",
174
+ "2": "LABEL_2"
175
+ },
176
+ "init_std": 0.02,
177
+ "is_encoder_decoder": true,
178
+ "label2id": {
179
+ "LABEL_0": 0,
180
+ "LABEL_1": 1,
181
+ "LABEL_2": 2
182
+ },
183
+ "max_position_embeddings": 1024,
184
+ "model_type": "bart",
185
+ "no_repeat_ngram_size": 3,
186
+ "normalize_before": false,
187
+ "normalize_embedding": true,
188
+ "num_beams": 4,
189
+ "num_hidden_layers": 24,
190
+ "pad_token_id": 0,
191
+ "scale_embedding": false,
192
+ "task_specific_params": {
193
+ "summarization": {
194
+ "length_penalty": 1.0,
195
+ "max_length": 128,
196
+ "min_length": 12,
197
+ "num_beams": 4
198
+ },
199
+ "summarization_cnn": {
200
+ "length_penalty": 2.0,
201
+ "max_length": 142,
202
+ "min_length": 56,
203
+ "num_beams": 4
204
+ },
205
+ "summarization_xsum": {
206
+ "length_penalty": 1.0,
207
+ "max_length": 62,
208
+ "min_length": 11,
209
+ "num_beams": 6
210
+ }
211
+ },
212
+ "tokenizer_class": "BertTokenizer",
213
+ "transformers_version": "4.38.1",
214
+ "use_cache": true,
215
+ "vocab_size": 51271
216
+ }
217
+
218
+ loading configuration file C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d\config.json
219
+ Model config BartConfig {
220
+ "activation_dropout": 0.1,
221
+ "activation_function": "gelu",
222
+ "add_bias_logits": false,
223
+ "add_final_layer_norm": false,
224
+ "architectures": [
225
+ "BartForConditionalGeneration"
226
+ ],
227
+ "attention_dropout": 0.1,
228
+ "bos_token_id": 101,
229
+ "classif_dropout": 0.1,
230
+ "classifier_dropout": 0.0,
231
+ "d_model": 1024,
232
+ "decoder_attention_heads": 16,
233
+ "decoder_ffn_dim": 4096,
234
+ "decoder_layerdrop": 0.0,
235
+ "decoder_layers": 4,
236
+ "decoder_start_token_id": 102,
237
+ "dropout": 0.1,
238
+ "early_stopping": true,
239
+ "encoder_attention_heads": 16,
240
+ "encoder_ffn_dim": 4096,
241
+ "encoder_layerdrop": 0.0,
242
+ "encoder_layers": 24,
243
+ "eos_token_id": 102,
244
+ "forced_eos_token_id": 102,
245
+ "gradient_checkpointing": false,
246
+ "id2label": {
247
+ "0": "LABEL_0",
248
+ "1": "LABEL_1",
249
+ "2": "LABEL_2"
250
+ },
251
+ "init_std": 0.02,
252
+ "is_encoder_decoder": true,
253
+ "label2id": {
254
+ "LABEL_0": 0,
255
+ "LABEL_1": 1,
256
+ "LABEL_2": 2
257
+ },
258
+ "max_position_embeddings": 1024,
259
+ "model_type": "bart",
260
+ "no_repeat_ngram_size": 3,
261
+ "normalize_before": false,
262
+ "normalize_embedding": true,
263
+ "num_beams": 4,
264
+ "num_hidden_layers": 24,
265
+ "pad_token_id": 0,
266
+ "scale_embedding": false,
267
+ "task_specific_params": {
268
+ "summarization": {
269
+ "length_penalty": 1.0,
270
+ "max_length": 128,
271
+ "min_length": 12,
272
+ "num_beams": 4
273
+ },
274
+ "summarization_cnn": {
275
+ "length_penalty": 2.0,
276
+ "max_length": 142,
277
+ "min_length": 56,
278
+ "num_beams": 4
279
+ },
280
+ "summarization_xsum": {
281
+ "length_penalty": 1.0,
282
+ "max_length": 62,
283
+ "min_length": 11,
284
+ "num_beams": 6
285
+ }
286
+ },
287
+ "tokenizer_class": "BertTokenizer",
288
+ "transformers_version": "4.38.1",
289
+ "use_cache": true,
290
+ "vocab_size": 51271
291
+ }
292
+
293
+ loading weights file C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d\model.safetensors
294
+ Generate config GenerationConfig {
295
+ "bos_token_id": 101,
296
+ "decoder_start_token_id": 102,
297
+ "early_stopping": true,
298
+ "eos_token_id": 102,
299
+ "forced_eos_token_id": 102,
300
+ "no_repeat_ngram_size": 3,
301
+ "num_beams": 4,
302
+ "pad_token_id": 0
303
+ }
304
+
305
+ All model checkpoint weights were used when initializing CPTForConditionalGeneration.
306
+
307
+ All the weights of CPTForConditionalGeneration were initialized from the model checkpoint at C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d.
308
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use CPTForConditionalGeneration for predictions without further training.
309
+ Generation config file not found, using a generation config created from the model config.
310
+ Map: 0%| | 0/3290 [00:00<?, ? examples/s]D:\Python\lib\site-packages\transformers\tokenization_utils_base.py:3892: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.
311
+ warnings.warn(
312
+ Map: 100%|█████████████████████████████████████████████████████████████████| 3290/3290 [00:11<00:00, 274.45 examples/s]
313
+ Map: 100%|█████████████████████████████████████████████████████████████████| 1098/1098 [00:03<00:00, 293.11 examples/s]
314
+ Map: 100%|█████████████████████████████████████████████████████████████���███| 1100/1100 [00:03<00:00, 284.09 examples/s]
315
+ The following columns in the training set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
316
+ ***** Running training *****
317
+ Num examples = 3,290
318
+ Num Epochs = 10
319
+ Instantaneous batch size per device = 6
320
+ Total train batch size (w. parallel, distributed & accumulation) = 6
321
+ Gradient Accumulation steps = 1
322
+ Total optimization steps = 5,490
323
+ Number of trainable parameters = 424,102,912
324
+ {'loss': 1.1409, 'grad_norm': 2.757542133331299, 'learning_rate': 1.817850637522769e-05, 'epoch': 0.91}
325
+ 10%|███████▉ | 549/5490 [05:02<38:38, 2.13it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
326
+ ***** Running Evaluation *****
327
+ Num examples = 1098
328
+ Batch size = 6
329
+ Generate config GenerationConfig {
330
+ "bos_token_id": 101,
331
+ "decoder_start_token_id": 102,
332
+ "early_stopping": true,
333
+ "eos_token_id": 102,
334
+ "forced_eos_token_id": 102,
335
+ "max_length": 512,
336
+ "no_repeat_ngram_size": 3,
337
+ "num_beams": 4,
338
+ "pad_token_id": 0
339
+ }
340
+
341
+ D:\Python\lib\site-packages\transformers\generation\utils.py:1339: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use and modify the model generation configuration (see https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )
342
+ warnings.warn(
343
+ {'eval_loss': 0.6597685217857361, 'eval_rouge-1': 46.5406, 'eval_rouge-2': 22.9769, 'eval_rouge-l': 32.9451, 'eval_gen_len': 140.5492, 'eval_runtime': 2725.7664, 'eval_samples_per_second': 0.403, 'eval_steps_per_second': 0.067, 'epoch': 1.0}
344
+ 10%|███████▉ | 549/5490 [50:28<38:38, 2.13it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
345
+ ***** Running Prediction *****
346
+ Num examples = 1100
347
+ Batch size = 6
348
+ {'loss': 0.6419, 'grad_norm': 3.1357340812683105, 'learning_rate': 1.6357012750455374e-05, 'epoch': 1.82}
349
+ 20%|███████████████▏ | 1098/5490 [1:41:48<35:16, 2.08it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
350
+ ***** Running Evaluation *****
351
+ Num examples = 1098
352
+ Batch size = 6
353
+ {'eval_loss': 0.5546132922172546, 'eval_rouge-1': 48.0276, 'eval_rouge-2': 22.0229, 'eval_rouge-l': 32.1636, 'eval_gen_len': 196.4153, 'eval_runtime': 3772.7644, 'eval_samples_per_second': 0.291, 'eval_steps_per_second': 0.049, 'epoch': 2.0}
354
+ 20%|███████████████▏ | 1098/5490 [2:44:41<35:16, 2.08it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
355
+ ***** Running Prediction *****
356
+ Num examples = 1100
357
+ Batch size = 6
358
+ {'loss': 0.5212, 'grad_norm': 1.975117802619934, 'learning_rate': 1.4535519125683062e-05, 'epoch': 2.73}
359
+ 30%|██████████████████████▊ | 1647/5490 [3:53:14<29:42, 2.16it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
360
+ ***** Running Evaluation *****
361
+ Num examples = 1098
362
+ Batch size = 6
363
+ {'eval_loss': 0.5185256004333496, 'eval_rouge-1': 50.9653, 'eval_rouge-2': 25.9311, 'eval_rouge-l': 35.8033, 'eval_gen_len': 159.2368, 'eval_runtime': 2838.4663, 'eval_samples_per_second': 0.387, 'eval_steps_per_second': 0.064, 'epoch': 3.0}
364
+ 30%|██████████████████████▊ | 1647/5490 [4:40:33<29:42, 2.16it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
365
+ ***** Running Prediction *****
366
+ Num examples = 1100
367
+ Batch size = 6
368
+ {'loss': 0.4477, 'grad_norm': 2.144341468811035, 'learning_rate': 1.2714025500910747e-05, 'epoch': 3.64}
369
+ 40%|██████████████████████████████▍ | 2196/5490 [5:33:59<26:57, 2.04it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
370
+ ***** Running Evaluation *****
371
+ Num examples = 1098
372
+ Batch size = 6
373
+ {'eval_loss': 0.49395063519477844, 'eval_rouge-1': 48.9221, 'eval_rouge-2': 23.9901, 'eval_rouge-l': 33.7623, 'eval_gen_len': 168.326, 'eval_runtime': 3077.747, 'eval_samples_per_second': 0.357, 'eval_steps_per_second': 0.059, 'epoch': 4.0}
374
+ 40%|██████████████████████████████▍ | 2196/5490 [6:25:17<26:57, 2.04it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
375
+ ***** Running Prediction *****
376
+ Num examples = 1100
377
+ Batch size = 6
378
+ {'loss': 0.3979, 'grad_norm': 2.392031669616699, 'learning_rate': 1.0892531876138435e-05, 'epoch': 4.55}
379
+ 50%|██████████████████████████████████████ | 2745/5490 [7:21:08<22:34, 2.03it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
380
+ ***** Running Evaluation *****
381
+ Num examples = 1098
382
+ Batch size = 6
383
+ {'eval_loss': 0.4893759787082672, 'eval_rouge-1': 50.0387, 'eval_rouge-2': 24.3981, 'eval_rouge-l': 34.4437, 'eval_gen_len': 175.8224, 'eval_runtime': 3577.8144, 'eval_samples_per_second': 0.307, 'eval_steps_per_second': 0.051, 'epoch': 5.0}
384
+ 50%|██████████████████████████████████████ | 2745/5490 [8:20:46<22:34, 2.03it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
385
+ ***** Running Prediction *****
386
+ Num examples = 1100
387
+ Batch size = 6
388
+ {'loss': 0.3643, 'grad_norm': 2.4226653575897217, 'learning_rate': 9.071038251366122e-06, 'epoch': 5.46}
389
+ 60%|█████████████████████████████████████████████▌ | 3294/5490 [9:25:41<16:56, 2.16it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
390
+ ***** Running Evaluation *****
391
+ Num examples = 1098
392
+ Batch size = 6
393
+ {'eval_loss': 0.48532548546791077, 'eval_rouge-1': 49.8422, 'eval_rouge-2': 25.0516, 'eval_rouge-l': 34.9932, 'eval_gen_len': 164.6248, 'eval_runtime': 3032.1092, 'eval_samples_per_second': 0.362, 'eval_steps_per_second': 0.06, 'epoch': 6.0}
394
+ 60%|█████████████████████████████████████████████ | 3294/5490 [10:16:13<16:56, 2.16it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
395
+ ***** Running Prediction *****
396
+ Num examples = 1100
397
+ Batch size = 6
398
+ {'loss': 0.3238, 'grad_norm': 2.65415620803833, 'learning_rate': 7.249544626593807e-06, 'epoch': 6.38}
399
+ 70%|████████████████████████████████████████████████████▌ | 3843/5490 [11:08:06<12:34, 2.18it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
400
+ ***** Running Evaluation *****
401
+ Num examples = 1098
402
+ Batch size = 6
403
+ {'eval_loss': 0.4873065650463104, 'eval_rouge-1': 50.8821, 'eval_rouge-2': 26.3218, 'eval_rouge-l': 36.3449, 'eval_gen_len': 160.2577, 'eval_runtime': 2730.9734, 'eval_samples_per_second': 0.402, 'eval_steps_per_second': 0.067, 'epoch': 7.0}
404
+ 70%|████████████████████████████████████████████████████▌ | 3843/5490 [11:53:37<12:34, 2.18it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
405
+ ***** Running Prediction *****
406
+ Num examples = 1100
407
+ Batch size = 6
408
+ {'loss': 0.2993, 'grad_norm': 3.1916089057922363, 'learning_rate': 5.428051001821493e-06, 'epoch': 7.29}
409
+ 80%|████████████████████████████████████████████████████████████ | 4392/5490 [12:45:34<08:18, 2.20it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
410
+ ***** Running Evaluation *****
411
+ Num examples = 1098
412
+ Batch size = 6
413
+ {'eval_loss': 0.4905695617198944, 'eval_rouge-1': 50.4851, 'eval_rouge-2': 25.7187, 'eval_rouge-l': 35.9106, 'eval_gen_len': 166.0501, 'eval_runtime': 2922.2897, 'eval_samples_per_second': 0.376, 'eval_steps_per_second': 0.063, 'epoch': 8.0}
414
+ 80%|████████████████████████████████████████████████████████████ | 4392/5490 [13:34:16<08:18, 2.20it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
415
+ ***** Running Prediction *****
416
+ Num examples = 1100
417
+ Batch size = 6
418
+ {'loss': 0.2735, 'grad_norm': 2.4203264713287354, 'learning_rate': 3.6065573770491806e-06, 'epoch': 8.2}
419
+ 90%|███████████████████████████████████████████████████████████████████▌ | 4941/5490 [14:28:33<04:10, 2.19it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
420
+ ***** Running Evaluation *****
421
+ Num examples = 1098
422
+ Batch size = 6
423
+ {'eval_loss': 0.4907337725162506, 'eval_rouge-1': 51.017, 'eval_rouge-2': 26.0933, 'eval_rouge-l': 36.1259, 'eval_gen_len': 167.5301, 'eval_runtime': 3054.2577, 'eval_samples_per_second': 0.359, 'eval_steps_per_second': 0.06, 'epoch': 9.0}
424
+ 90%|███████████████████████████████████████████████████████████████████▌ | 4941/5490 [15:19:27<04:10, 2.19it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
425
+ ***** Running Prediction *****
426
+ Num examples = 1100
427
+ Batch size = 6
428
+ {'loss': 0.2645, 'grad_norm': 3.681400775909424, 'learning_rate': 1.7850637522768672e-06, 'epoch': 9.11}
429
+ 100%|███████████████████████████████████████████████████████████████████████████| 5490/5490 [16:15:41<00:00, 2.20it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
430
+ ***** Running Evaluation *****
431
+ Num examples = 1098
432
+ Batch size = 6
433
+ {'eval_loss': 0.4916660189628601, 'eval_rouge-1': 51.2775, 'eval_rouge-2': 26.6234, 'eval_rouge-l': 36.7381, 'eval_gen_len': 163.3725, 'eval_runtime': 2893.3367, 'eval_samples_per_second': 0.379, 'eval_steps_per_second': 0.063, 'epoch': 10.0}
434
+ 100%|████████████████████████████████████████████████████████████���██████████████| 5490/5490 [17:03:54<00:00, 2.20it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
435
+ ***** Running Prediction *****
436
+ Num examples = 1100
437
+ Batch size = 6
438
+
439
+
440
+ Training completed. Do not forget to share your model on huggingface.co/models =)
441
+
442
+
443
+ {'train_runtime': 64358.151, 'train_samples_per_second': 0.511, 'train_steps_per_second': 0.085, 'train_loss': 0.4479398911550831, 'epoch': 10.0}
444
+ 100%|███████████████████████████████████████████████████████████████████████████| 5490/5490 [17:52:38<00:00, 11.72s/it]
445
+ Saving model checkpoint to output/adgen/6
446
+ Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.
447
+ Non-default generation parameters: {'max_length': 512, 'early_stopping': True, 'num_beams': 4, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 102}
448
+ Configuration saved in output/adgen/6\config.json
449
+ Configuration saved in output/adgen/6\generation_config.json
450
+ Removed shared tensor {'model.shared.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight'} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading
451
+ Model weights saved in output/adgen/6\model.safetensors
452
+ tokenizer config file saved in output/adgen/6\tokenizer_config.json
453
+ Special tokens file saved in output/adgen/6\special_tokens_map.json
454
+ ***** train metrics *****
455
+ epoch = 10.0
456
+ train_loss = 0.4479
457
+ train_runtime = 17:52:38.15
458
+ train_samples = 3290
459
+ train_samples_per_second = 0.511
460
+ train_steps_per_second = 0.085
461
+ The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
462
+ ***** Running Prediction *****
463
+ Num examples = 1100
464
+ Batch size = 6
465
+ 100%|████████████████████████████████████████████████████████████████████████████████| 184/184 [48:39<00:00, 15.87s/it]
466
+
467
+ C:\Users\Lenovo\Desktop\wxy\CPT-master\finetune\generation>
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "C:\\Users\\Lenovo\\.cache\\huggingface\\hub\\models--fnlp--cpt-large\\snapshots\\f07323ad5818364d47fc17cc4088072cd2f5f46d",
3
+ "activation_dropout": 0.1,
4
+ "activation_function": "gelu",
5
+ "add_bias_logits": false,
6
+ "add_final_layer_norm": false,
7
+ "architectures": [
8
+ "CPTForConditionalGeneration"
9
+ ],
10
+ "attention_dropout": 0.1,
11
+ "bos_token_id": 101,
12
+ "classif_dropout": 0.1,
13
+ "classifier_dropout": 0.0,
14
+ "d_model": 1024,
15
+ "decoder_attention_heads": 16,
16
+ "decoder_ffn_dim": 4096,
17
+ "decoder_layerdrop": 0.0,
18
+ "decoder_layers": 4,
19
+ "decoder_start_token_id": 102,
20
+ "dropout": 0.1,
21
+ "early_stopping": true,
22
+ "encoder_attention_heads": 16,
23
+ "encoder_ffn_dim": 4096,
24
+ "encoder_layerdrop": 0.0,
25
+ "encoder_layers": 24,
26
+ "eos_token_id": 102,
27
+ "forced_eos_token_id": 102,
28
+ "gradient_checkpointing": false,
29
+ "id2label": {
30
+ "0": "LABEL_0",
31
+ "1": "LABEL_1",
32
+ "2": "LABEL_2"
33
+ },
34
+ "init_std": 0.02,
35
+ "is_encoder_decoder": true,
36
+ "label2id": {
37
+ "LABEL_0": 0,
38
+ "LABEL_1": 1,
39
+ "LABEL_2": 2
40
+ },
41
+ "max_length": 512,
42
+ "max_position_embeddings": 1024,
43
+ "model_type": "bart",
44
+ "no_repeat_ngram_size": 3,
45
+ "normalize_before": false,
46
+ "normalize_embedding": true,
47
+ "num_beams": 4,
48
+ "num_hidden_layers": 24,
49
+ "pad_token_id": 0,
50
+ "scale_embedding": false,
51
+ "task_specific_params": {
52
+ "summarization": {
53
+ "length_penalty": 1.0,
54
+ "max_length": 128,
55
+ "min_length": 12,
56
+ "num_beams": 4
57
+ },
58
+ "summarization_cnn": {
59
+ "length_penalty": 2.0,
60
+ "max_length": 142,
61
+ "min_length": 56,
62
+ "num_beams": 4
63
+ },
64
+ "summarization_xsum": {
65
+ "length_penalty": 1.0,
66
+ "max_length": 62,
67
+ "min_length": 11,
68
+ "num_beams": 6
69
+ }
70
+ },
71
+ "tokenizer_class": "BertTokenizer",
72
+ "torch_dtype": "float32",
73
+ "transformers_version": "4.38.1",
74
+ "use_cache": true,
75
+ "vocab_size": 51271
76
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 101,
3
+ "decoder_start_token_id": 102,
4
+ "early_stopping": true,
5
+ "eos_token_id": 102,
6
+ "forced_eos_token_id": 102,
7
+ "max_length": 512,
8
+ "no_repeat_ngram_size": 3,
9
+ "num_beams": 4,
10
+ "pad_token_id": 0,
11
+ "transformers_version": "4.38.1"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fce70b4feede3ba78b3563a7db96db860d16533e176fd182c6956f8876f742c
3
+ size 1696679724
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[EOS]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": "[UNK]"
9
+ }
test_generations.txt ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "104": {
44
+ "content": "[EOS]",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "[CLS]",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "[CLS]",
55
+ "do_basic_tokenize": true,
56
+ "do_lower_case": false,
57
+ "eos_token": "[EOS]",
58
+ "mask_token": "[MASK]",
59
+ "model_max_length": 1000000000000000019884624838656,
60
+ "never_split": null,
61
+ "pad_token": "[PAD]",
62
+ "sep_token": "[SEP]",
63
+ "strip_accents": null,
64
+ "tokenize_chinese_chars": true,
65
+ "tokenizer_class": "BertTokenizer",
66
+ "unk_token": "[UNK]"
67
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "train_loss": 0.4479398911550831,
4
+ "train_runtime": 64358.151,
5
+ "train_samples": 3290,
6
+ "train_samples_per_second": 0.511,
7
+ "train_steps_per_second": 0.085
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 5490,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.91,
13
+ "grad_norm": 2.757542133331299,
14
+ "learning_rate": 1.817850637522769e-05,
15
+ "loss": 1.1409,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 1.0,
20
+ "eval_gen_len": 140.5492,
21
+ "eval_loss": 0.6597685217857361,
22
+ "eval_rouge-1": 46.5406,
23
+ "eval_rouge-2": 22.9769,
24
+ "eval_rouge-l": 32.9451,
25
+ "eval_runtime": 2725.7664,
26
+ "eval_samples_per_second": 0.403,
27
+ "eval_steps_per_second": 0.067,
28
+ "step": 549
29
+ },
30
+ {
31
+ "epoch": 1.0,
32
+ "predict_gen_len": 141.1755,
33
+ "predict_loss": 0.6476863622665405,
34
+ "predict_rouge-1": 47.1078,
35
+ "predict_rouge-2": 23.5074,
36
+ "predict_rouge-l": 33.3516,
37
+ "predict_runtime": 2766.9583,
38
+ "predict_samples_per_second": 0.398,
39
+ "predict_steps_per_second": 0.066
40
+ },
41
+ {
42
+ "epoch": 1.82,
43
+ "grad_norm": 3.1357340812683105,
44
+ "learning_rate": 1.6357012750455374e-05,
45
+ "loss": 0.6419,
46
+ "step": 1000
47
+ },
48
+ {
49
+ "epoch": 2.0,
50
+ "eval_gen_len": 196.4153,
51
+ "eval_loss": 0.5546132922172546,
52
+ "eval_rouge-1": 48.0276,
53
+ "eval_rouge-2": 22.0229,
54
+ "eval_rouge-l": 32.1636,
55
+ "eval_runtime": 3772.7644,
56
+ "eval_samples_per_second": 0.291,
57
+ "eval_steps_per_second": 0.049,
58
+ "step": 1098
59
+ },
60
+ {
61
+ "epoch": 2.0,
62
+ "predict_gen_len": 196.2973,
63
+ "predict_loss": 0.5356236100196838,
64
+ "predict_rouge-1": 48.5987,
65
+ "predict_rouge-2": 22.7122,
66
+ "predict_rouge-l": 32.8889,
67
+ "predict_runtime": 3794.5656,
68
+ "predict_samples_per_second": 0.29,
69
+ "predict_steps_per_second": 0.048
70
+ },
71
+ {
72
+ "epoch": 2.73,
73
+ "grad_norm": 1.975117802619934,
74
+ "learning_rate": 1.4535519125683062e-05,
75
+ "loss": 0.5212,
76
+ "step": 1500
77
+ },
78
+ {
79
+ "epoch": 3.0,
80
+ "eval_gen_len": 159.2368,
81
+ "eval_loss": 0.5185256004333496,
82
+ "eval_rouge-1": 50.9653,
83
+ "eval_rouge-2": 25.9311,
84
+ "eval_rouge-l": 35.8033,
85
+ "eval_runtime": 2838.4663,
86
+ "eval_samples_per_second": 0.387,
87
+ "eval_steps_per_second": 0.064,
88
+ "step": 1647
89
+ },
90
+ {
91
+ "epoch": 3.0,
92
+ "predict_gen_len": 160.9509,
93
+ "predict_loss": 0.49497663974761963,
94
+ "predict_rouge-1": 51.167,
95
+ "predict_rouge-2": 26.1709,
96
+ "predict_rouge-l": 36.1567,
97
+ "predict_runtime": 2882.8728,
98
+ "predict_samples_per_second": 0.382,
99
+ "predict_steps_per_second": 0.064
100
+ },
101
+ {
102
+ "epoch": 3.64,
103
+ "grad_norm": 2.144341468811035,
104
+ "learning_rate": 1.2714025500910747e-05,
105
+ "loss": 0.4477,
106
+ "step": 2000
107
+ },
108
+ {
109
+ "epoch": 4.0,
110
+ "eval_gen_len": 168.326,
111
+ "eval_loss": 0.49395063519477844,
112
+ "eval_rouge-1": 48.9221,
113
+ "eval_rouge-2": 23.9901,
114
+ "eval_rouge-l": 33.7623,
115
+ "eval_runtime": 3077.747,
116
+ "eval_samples_per_second": 0.357,
117
+ "eval_steps_per_second": 0.059,
118
+ "step": 2196
119
+ },
120
+ {
121
+ "epoch": 4.0,
122
+ "predict_gen_len": 168.0445,
123
+ "predict_loss": 0.4722643792629242,
124
+ "predict_rouge-1": 49.6399,
125
+ "predict_rouge-2": 24.5059,
126
+ "predict_rouge-l": 34.4684,
127
+ "predict_runtime": 3035.2896,
128
+ "predict_samples_per_second": 0.362,
129
+ "predict_steps_per_second": 0.061
130
+ },
131
+ {
132
+ "epoch": 4.55,
133
+ "grad_norm": 2.392031669616699,
134
+ "learning_rate": 1.0892531876138435e-05,
135
+ "loss": 0.3979,
136
+ "step": 2500
137
+ },
138
+ {
139
+ "epoch": 5.0,
140
+ "eval_gen_len": 175.8224,
141
+ "eval_loss": 0.4893759787082672,
142
+ "eval_rouge-1": 50.0387,
143
+ "eval_rouge-2": 24.3981,
144
+ "eval_rouge-l": 34.4437,
145
+ "eval_runtime": 3577.8144,
146
+ "eval_samples_per_second": 0.307,
147
+ "eval_steps_per_second": 0.051,
148
+ "step": 2745
149
+ },
150
+ {
151
+ "epoch": 5.0,
152
+ "predict_gen_len": 176.2991,
153
+ "predict_loss": 0.4671793282032013,
154
+ "predict_rouge-1": 50.3641,
155
+ "predict_rouge-2": 24.5994,
156
+ "predict_rouge-l": 34.933,
157
+ "predict_runtime": 3579.3858,
158
+ "predict_samples_per_second": 0.307,
159
+ "predict_steps_per_second": 0.051
160
+ },
161
+ {
162
+ "epoch": 5.46,
163
+ "grad_norm": 2.4226653575897217,
164
+ "learning_rate": 9.071038251366122e-06,
165
+ "loss": 0.3643,
166
+ "step": 3000
167
+ },
168
+ {
169
+ "epoch": 6.0,
170
+ "eval_gen_len": 164.6248,
171
+ "eval_loss": 0.48532548546791077,
172
+ "eval_rouge-1": 49.8422,
173
+ "eval_rouge-2": 25.0516,
174
+ "eval_rouge-l": 34.9932,
175
+ "eval_runtime": 3032.1092,
176
+ "eval_samples_per_second": 0.362,
177
+ "eval_steps_per_second": 0.06,
178
+ "step": 3294
179
+ },
180
+ {
181
+ "epoch": 6.0,
182
+ "predict_gen_len": 165.0855,
183
+ "predict_loss": 0.4631520211696625,
184
+ "predict_rouge-1": 50.5523,
185
+ "predict_rouge-2": 25.7796,
186
+ "predict_rouge-l": 35.8814,
187
+ "predict_runtime": 2810.2495,
188
+ "predict_samples_per_second": 0.391,
189
+ "predict_steps_per_second": 0.065
190
+ },
191
+ {
192
+ "epoch": 6.38,
193
+ "grad_norm": 2.65415620803833,
194
+ "learning_rate": 7.249544626593807e-06,
195
+ "loss": 0.3238,
196
+ "step": 3500
197
+ },
198
+ {
199
+ "epoch": 7.0,
200
+ "eval_gen_len": 160.2577,
201
+ "eval_loss": 0.4873065650463104,
202
+ "eval_rouge-1": 50.8821,
203
+ "eval_rouge-2": 26.3218,
204
+ "eval_rouge-l": 36.3449,
205
+ "eval_runtime": 2730.9734,
206
+ "eval_samples_per_second": 0.402,
207
+ "eval_steps_per_second": 0.067,
208
+ "step": 3843
209
+ },
210
+ {
211
+ "epoch": 7.0,
212
+ "predict_gen_len": 163.3909,
213
+ "predict_loss": 0.46200141310691833,
214
+ "predict_rouge-1": 51.2034,
215
+ "predict_rouge-2": 26.3222,
216
+ "predict_rouge-l": 36.5416,
217
+ "predict_runtime": 2814.6597,
218
+ "predict_samples_per_second": 0.391,
219
+ "predict_steps_per_second": 0.065
220
+ },
221
+ {
222
+ "epoch": 7.29,
223
+ "grad_norm": 3.1916089057922363,
224
+ "learning_rate": 5.428051001821493e-06,
225
+ "loss": 0.2993,
226
+ "step": 4000
227
+ },
228
+ {
229
+ "epoch": 8.0,
230
+ "eval_gen_len": 166.0501,
231
+ "eval_loss": 0.4905695617198944,
232
+ "eval_rouge-1": 50.4851,
233
+ "eval_rouge-2": 25.7187,
234
+ "eval_rouge-l": 35.9106,
235
+ "eval_runtime": 2922.2897,
236
+ "eval_samples_per_second": 0.376,
237
+ "eval_steps_per_second": 0.063,
238
+ "step": 4392
239
+ },
240
+ {
241
+ "epoch": 8.0,
242
+ "predict_gen_len": 166.8727,
243
+ "predict_loss": 0.4648807942867279,
244
+ "predict_rouge-1": 50.8481,
245
+ "predict_rouge-2": 25.9305,
246
+ "predict_rouge-l": 36.2178,
247
+ "predict_runtime": 2955.6147,
248
+ "predict_samples_per_second": 0.372,
249
+ "predict_steps_per_second": 0.062
250
+ },
251
+ {
252
+ "epoch": 8.2,
253
+ "grad_norm": 2.4203264713287354,
254
+ "learning_rate": 3.6065573770491806e-06,
255
+ "loss": 0.2735,
256
+ "step": 4500
257
+ },
258
+ {
259
+ "epoch": 9.0,
260
+ "eval_gen_len": 167.5301,
261
+ "eval_loss": 0.4907337725162506,
262
+ "eval_rouge-1": 51.017,
263
+ "eval_rouge-2": 26.0933,
264
+ "eval_rouge-l": 36.1259,
265
+ "eval_runtime": 3054.2577,
266
+ "eval_samples_per_second": 0.359,
267
+ "eval_steps_per_second": 0.06,
268
+ "step": 4941
269
+ },
270
+ {
271
+ "epoch": 9.0,
272
+ "predict_gen_len": 168.3891,
273
+ "predict_loss": 0.46499770879745483,
274
+ "predict_rouge-1": 51.8088,
275
+ "predict_rouge-2": 27.0355,
276
+ "predict_rouge-l": 37.2662,
277
+ "predict_runtime": 3070.5212,
278
+ "predict_samples_per_second": 0.358,
279
+ "predict_steps_per_second": 0.06
280
+ },
281
+ {
282
+ "epoch": 9.11,
283
+ "grad_norm": 3.681400775909424,
284
+ "learning_rate": 1.7850637522768672e-06,
285
+ "loss": 0.2645,
286
+ "step": 5000
287
+ },
288
+ {
289
+ "epoch": 10.0,
290
+ "eval_gen_len": 163.3725,
291
+ "eval_loss": 0.4916660189628601,
292
+ "eval_rouge-1": 51.2775,
293
+ "eval_rouge-2": 26.6234,
294
+ "eval_rouge-l": 36.7381,
295
+ "eval_runtime": 2893.3367,
296
+ "eval_samples_per_second": 0.379,
297
+ "eval_steps_per_second": 0.063,
298
+ "step": 5490
299
+ },
300
+ {
301
+ "epoch": 10.0,
302
+ "predict_gen_len": 164.1664,
303
+ "predict_loss": 0.4661196768283844,
304
+ "predict_rouge-1": 51.6636,
305
+ "predict_rouge-2": 26.831,
306
+ "predict_rouge-l": 37.0015,
307
+ "predict_runtime": 2923.1866,
308
+ "predict_samples_per_second": 0.376,
309
+ "predict_steps_per_second": 0.063
310
+ },
311
+ {
312
+ "epoch": 10.0,
313
+ "step": 5490,
314
+ "total_flos": 3.718809382109184e+16,
315
+ "train_loss": 0.4479398911550831,
316
+ "train_runtime": 64358.151,
317
+ "train_samples_per_second": 0.511,
318
+ "train_steps_per_second": 0.085
319
+ }
320
+ ],
321
+ "logging_steps": 500,
322
+ "max_steps": 5490,
323
+ "num_input_tokens_seen": 0,
324
+ "num_train_epochs": 10,
325
+ "save_steps": 500,
326
+ "total_flos": 3.718809382109184e+16,
327
+ "train_batch_size": 6,
328
+ "trial_name": null,
329
+ "trial_params": null
330
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69bc12c2bf6d07601a59a0d159be6449eee46ad71744adb1600c7f23bae1fdff
3
+ size 5048
vocab.txt ADDED
The diff for this file is too large to render. See raw diff