File size: 2,385 Bytes
b30fef8
 
 
 
e8cb2e6
 
b30fef8
 
 
 
e8cb2e6
 
 
 
 
 
 
 
 
 
 
b30fef8
 
 
 
 
 
 
e8cb2e6
b30fef8
eae97bf
 
b30fef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae97bf
 
b30fef8
 
eae97bf
 
 
b30fef8
 
 
 
 
 
 
 
eae97bf
 
 
 
 
 
 
 
 
 
b30fef8
 
 
 
eae97bf
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
base_model: jarod0411/zinc10M_gpt2_SMILES_bpe_combined_step1
tags:
- generated_from_trainer
datasets:
- jarod0411/linker_v2
metrics:
- accuracy
model-index:
- name: stage1
  results:
  - task:
      name: Causal Language Modeling
      type: text-generation
    dataset:
      name: jarod0411/linker_v2
      type: jarod0411/linker_v2
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8936249984035948
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# stage1

This model is a fine-tuned version of [jarod0411/zinc10M_gpt2_SMILES_bpe_combined_step1](https://huggingface.co/jarod0411/zinc10M_gpt2_SMILES_bpe_combined_step1) on the jarod0411/linker_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3311
- Accuracy: 0.8936

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 1
- distributed_type: multi-GPU
- num_devices: 6
- total_train_batch_size: 144
- total_eval_batch_size: 144
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.375         | 1.0   | 23931  | 0.3615          | 0.8853   |
| 0.3609        | 2.0   | 47862  | 0.3494          | 0.8887   |
| 0.3533        | 3.0   | 71793  | 0.3432          | 0.8904   |
| 0.3486        | 4.0   | 95724  | 0.3394          | 0.8914   |
| 0.3456        | 5.0   | 119655 | 0.3367          | 0.8921   |
| 0.3432        | 6.0   | 143586 | 0.3346          | 0.8927   |
| 0.3412        | 7.0   | 167517 | 0.3333          | 0.8930   |
| 0.3397        | 8.0   | 191448 | 0.3322          | 0.8933   |
| 0.339         | 9.0   | 215379 | 0.3314          | 0.8935   |
| 0.3383        | 10.0  | 239310 | 0.3311          | 0.8936   |


### Framework versions

- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2