Commit
·
30f9220
1
Parent(s):
1e9b807
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +34 -1
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,36 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 114.28 +/- 94.60
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1b55bb1560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1b55bb15f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1b55bb1680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1b55bb1710>", "_build": "<function ActorCriticPolicy._build at 0x7f1b55bb17a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1b55bb1830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1b55bb18c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1b55bb1950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1b55bb19e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1b55bb1a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1b55bb1b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1b55b891b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1657714478.383944, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAATQ/ZvZxGQT5ba36+DiYsvrMd8LwicZW9AAAAAAAAAABamIq9j0Ybuvus4rnCmxS4OfiuusroBTkAAIA/AACAP8hMi74keQI8d7RLu73CEDnlgpm9WiJuOgAAgD8AAIA/ZoyfvSk4JLpM5R85rZaUtbl8ljqxCDa4AACAPwAAgD8z0ay9FHiAuuPg4LsfnZo2Yv0xOsDJCrYAAIA/AACAPysNjr49oCg8Vg9xudP4Vzc2Xbm9EnqMOAAAgD8AAIA/ADmqvFzbP7oTbtK6q5hLtHkmXToaFfE5AACAPwAAgD/95ZY+8rxnP6SJyT0Ap82+VySiPi/xqjwAAAAAAAAAAM2aND24xq+5vowcu01O5LVALpI6b6s6OgAAgD8AAIA/OuN1vpnyYz5JRp09WUDavQ5FfD1HQxA9AAAAAAAAAABmWeO8F2G4P3GjDL8wYFY+mquwPLPkOT0AAAAAAAAAAIA+Ez5EPiY+g9R1vkCwKr6f9/g8bfXSvQAAAAAAAAAAAPvdPFxXObqSZ2451zfqNPKLmTsS5oq4AACAPwAAgD+zO5o+jlqZP+e3tj73P7++sFRzPiMQvL0AAAAAAAAAAICdNr2PClG6lhZyvIergDYk03s7EKzotQAAgD8AAIA/E0CRPim6PrwS1Tm6zHEjOCmyrb1Nu185AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvoV1490fYkCUhpRSlIwBbJRN6AOMAXSUR0B4jbvmYBvKdX2UKGgGaAloD0MIecpquh6RYkCUhpRSlGgVTegDaBZHQHiYvhVENON1fZQoaAZoCWgPQwj5Tsx6MRg2QJSGlFKUaBVL32gWR0B4m4KKHfuUdX2UKGgGaAloD0MInGnC9hOcYUCUhpRSlGgVTegDaBZHQHikWCVbA1x1fZQoaAZoCWgPQwitLxLacsVcQJSGlFKUaBVN6ANoFkdAeMn8cMmWt3V9lChoBmgJaA9DCLslOWBXYx9AlIaUUpRoFUvfaBZHQHjOPbO/tY11fZQoaAZoCWgPQwi5bkp5LcRlQJSGlFKUaBVN6ANoFkdAeNk/Q0GeMHV9lChoBmgJaA9DCM6OVN/5QVtAlIaUUpRoFU3oA2gWR0B5RACyQgcMdX2UKGgGaAloD0MIFqHYCpq2YUCUhpRSlGgVTegDaBZHQHlHCGSIP9V1fZQoaAZoCWgPQwgjaw2l9iRcQJSGlFKUaBVN6ANoFkdAeUjchC+lCXV9lChoBmgJaA9DCE7U0twK41hAlIaUUpRoFU3oA2gWR0B5a9vm5lOHdX2UKGgGaAloD0MIW0BoPfytYUCUhpRSlGgVTegDaBZHQHlt7XxvvSd1fZQoaAZoCWgPQwjvrN12od5eQJSGlFKUaBVN6ANoFkdAeZWs5n13+3V9lChoBmgJaA9DCE57Ss4JImBAlIaUUpRoFU3oA2gWR0B5mXsmfGuLdX2UKGgGaAloD0MIN1X3yOY1Y0CUhpRSlGgVTegDaBZHQHmzT2Bas6t1fZQoaAZoCWgPQwieRe9UwC1dQJSGlFKUaBVN6ANoFkdAecRiEQGwA3V9lChoBmgJaA9DCFJkraHUBFVAlIaUUpRoFU3oA2gWR0B5ykLZzxPPdX2UKGgGaAloD0MICB9KtOS8VECUhpRSlGgVTegDaBZHQHnSRZyMkyF1fZQoaAZoCWgPQwiGPe3wVyJjQJSGlFKUaBVN6ANoFkdAed4bX6InB3V9lChoBmgJaA9DCAKBzqRNplNAlIaUUpRoFU3oA2gWR0B56fL9uP3jdX2UKGgGaAloD0MIQl2kUBauGUCUhpRSlGgVS+5oFkdAegeXko4MnnV9lChoBmgJaA9DCKkR+pn6pGBAlIaUUpRoFU3oA2gWR0B6D1v2oNutdX2UKGgGaAloD0MI2xX6YJmOYkCUhpRSlGgVTegDaBZHQHoTSnHeaa11fZQoaAZoCWgPQwi3YRQEDwZhQJSGlFKUaBVN6ANoFkdAeh1xiobXH3V9lChoBmgJaA9DCNf5t8t+bSPAlIaUUpRoFUv4aBZHQHoiIy9EkSp1fZQoaAZoCWgPQwhDkIMSZqBiQJSGlFKUaBVN6ANoFkdAeoOxNZeRgnV9lChoBmgJaA9DCEut9xttSmNAlIaUUpRoFU3oA2gWR0B6hidy1eBydX2UKGgGaAloD0MIhnXj3ZE6YkCUhpRSlGgVTegDaBZHQHqHt9Ujs2N1fZQoaAZoCWgPQwhjtmRVhPheQJSGlFKUaBVN6ANoFkdAeqcnfEXLvHV9lChoBmgJaA9DCL76eOg7rWJAlIaUUpRoFU3oA2gWR0B6qTC/GlyjdX2UKGgGaAloD0MIcjRHVn4DX0CUhpRSlGgVTegDaBZHQHrNvacqe9V1fZQoaAZoCWgPQwhJg9vaQlJhQJSGlFKUaBVN6ANoFkdAetE6NlyzX3V9lChoBmgJaA9DCHkB9tEpSWRAlIaUUpRoFU3oA2gWR0B66ieVcD8tdX2UKGgGaAloD0MI4nX9gt0WXUCUhpRSlGgVTegDaBZHQHr69CJGe+V1fZQoaAZoCWgPQwgnoImw4b5ZQJSGlFKUaBVN6ANoFkdAewCsKb8WK3V9lChoBmgJaA9DCHHJcad0SDpAlIaUUpRoFUv7aBZHQHsP+KTB68h1fZQoaAZoCWgPQwjB/1ayY85ZQJSGlFKUaBVN6ANoFkdAexUtnf2saXV9lChoBmgJaA9DCI7qdCDr8TTAlIaUUpRoFUuuaBZHQHskqYAsCkp1fZQoaAZoCWgPQwjWjXdHxkRdQJSGlFKUaBVN6ANoFkdAe0NFb3XZoXV9lChoBmgJaA9DCGe1wB4TlGFAlIaUUpRoFU3oA2gWR0B7S93xFy7xdX2UKGgGaAloD0MIX9ODglJcPECUhpRSlGgVS+BoFkdAe002IwdsBXV9lChoBmgJaA9DCDl7Z7RV5VtAlIaUUpRoFU3oA2gWR0B7UEBIWgvldX2UKGgGaAloD0MI7KAS1zHhZ0CUhpRSlGgVTU8BaBZHQHtTR9Tgl4V1fZQoaAZoCWgPQwi6ZvLNtqlkQJSGlFKUaBVN6ANoFkdAe1oiADq4Y3V9lChoBmgJaA9DCL5MFCF1XldAlIaUUpRoFU3oA2gWR0B7XsB0ZFXrdX2UKGgGaAloD0MIeozyzMu2XkCUhpRSlGgVTegDaBZHQHtzGuX/o7p1fZQoaAZoCWgPQwgLQnkfR2FeQJSGlFKUaBVN6ANoFkdAe8BT/ACW/3V9lChoBmgJaA9DCHzT9NkBM2JAlIaUUpRoFU3oA2gWR0B7wa2OQyRCdX2UKGgGaAloD0MIJuFCHsEjQsCUhpRSlGgVS81oFkdAe8XkPMB6r3V9lChoBmgJaA9DCMX/HVGhZkBAlIaUUpRoFUviaBZHQHvMekcjqwB1fZQoaAZoCWgPQwhXl1MCYg1hQJSGlFKUaBVN6ANoFkdAe94Yw7DEWXV9lChoBmgJaA9DCLkANEqXA2VAlIaUUpRoFU3oA2gWR0B739fMOf/WdX2UKGgGaAloD0MIg6eQK/WsJMCUhpRSlGgVS/VoFkdAe/ygf2bobHV9lChoBmgJaA9DCFeyYyMQjWFAlIaUUpRoFU3oA2gWR0B8A8Mz/IbPdX2UKGgGaAloD0MIE+8AT1qeQkCUhpRSlGgVS/poFkdAfBvkH2RJVnV9lChoBmgJaA9DCFX5npGItmBAlIaUUpRoFU3oA2gWR0B8IT67/XGwdX2UKGgGaAloD0MIGt1B7EyfWkCUhpRSlGgVTegDaBZHQHxK/Ot4iX91fZQoaAZoCWgPQwgcKPBOPnxbQJSGlFKUaBVN6ANoFkdAfGR6gdwNsnV9lChoBmgJaA9DCPnWh/VGoVhAlIaUUpRoFU3oA2gWR0B8j6z4UN8WdX2UKGgGaAloD0MI93ghHZ7RZUCUhpRSlGgVTegDaBZHQHybOaWom5V1fZQoaAZoCWgPQwg+srlqngRcQJSGlFKUaBVN6ANoFkdAfJx5WilBQnV9lChoBmgJaA9DCOSByCJNvFpAlIaUUpRoFU3oA2gWR0B8qf6zmfXgdX2UKGgGaAloD0MIlX7C2a1RYECUhpRSlGgVTegDaBZHQHyvgYHgP3B1fZQoaAZoCWgPQwiTAgtgyqhlQJSGlFKUaBVN6ANoFkdAfMW+oLofS3V9lChoBmgJaA9DCGX7kLdc+11AlIaUUpRoFU3oA2gWR0B8yFDArQPadX2UKGgGaAloD0MIXmVtU7y7YkCUhpRSlGgVTegDaBZHQHzJ0E9t/F11fZQoaAZoCWgPQwjsMCb9vdNcQJSGlFKUaBVN6ANoFkdAfR/kvsZ5zHV9lChoBmgJaA9DCFWgFoOHGR5AlIaUUpRoFU0QAWgWR0B9IuHVPN3XdX2UKGgGaAloD0MIxhSscTZYXkCUhpRSlGgVTegDaBZHQH0w810knkV1fZQoaAZoCWgPQwjtRh/zAVJjQJSGlFKUaBVN6ANoFkdAfUsf5ULlWHV9lChoBmgJaA9DCByz7EngDGrAlIaUUpRoFU36AWgWR0B9TLAO8TSLdX2UKGgGaAloD0MIUg/R6A4IXkCUhpRSlGgVTegDaBZHQH1Q3Fkxyn11fZQoaAZoCWgPQwgYQPhQooNkQJSGlFKUaBVN6ANoFkdAfWW7GvOhTXV9lChoBmgJaA9DCMAEbt1NtmBAlIaUUpRoFU3oA2gWR0B9aplf7aZhdX2UKGgGaAloD0MISMMpc/OlM0CUhpRSlGgVS/RoFkdAfYbIwudwvXV9lChoBmgJaA9DCG7CvTJvfVxAlIaUUpRoFU3oA2gWR0B9kf+dbxEwdX2UKGgGaAloD0MIRkHw+PYLYkCUhpRSlGgVTegDaBZHQH2q3LNfPX11fZQoaAZoCWgPQwg6eCY0SS9eQJSGlFKUaBVN6ANoFkdAfdcW3Sa3JHV9lChoBmgJaA9DCKc+kLxzLldAlIaUUpRoFU3oA2gWR0B951tbcGkfdX2UKGgGaAloD0MIQKTfvo7EYUCUhpRSlGgVTegDaBZHQH3tmuoxYaJ1fZQoaAZoCWgPQwjC3O7lPvBjQJSGlFKUaBVN6ANoFkdAfgdm7aqS5nV9lChoBmgJaA9DCE2BzM4ixGdAlIaUUpRoFU3oA2gWR0B+Ckb70nPWdX2UKGgGaAloD0MIcZNRZRhQUUCUhpRSlGgVTegDaBZHQH4MFJHy3Ct1fZQoaAZoCWgPQwiHi9zTVRhiQJSGlFKUaBVN6ANoFkdAfmQLB9Cu2nV9lChoBmgJaA9DCBZruMi94mRAlIaUUpRoFU3oA2gWR0B+Z5qtYB/7dX2UKGgGaAloD0MI4Cu69RqLYECUhpRSlGgVTegDaBZHQH53YbfgrH51fZQoaAZoCWgPQwhsskY9RAVbQJSGlFKUaBVN6ANoFkdAfpOsXzlLe3V9lChoBmgJaA9DCAjovpzZakFAlIaUUpRoFU0gAWgWR0B+lCO7xusLdX2UKGgGaAloD0MISpnU0AZgXUCUhpRSlGgVTegDaBZHQH6Zy48U21l1fZQoaAZoCWgPQwiLql/p/B1jQJSGlFKUaBVN6ANoFkdAfq8J2t+1B3V9lChoBmgJaA9DCIaOHVTi7FpAlIaUUpRoFU3oA2gWR0B+s4EgW8AadX2UKGgGaAloD0MIIPDAAMKhW0CUhpRSlGgVTegDaBZHQH7MnSncclx1fZQoaAZoCWgPQwhMF2L1R9peQJSGlFKUaBVN6ANoFkdAftXSFXaJynV9lChoBmgJaA9DCOvGuyPjv2FAlIaUUpRoFU3oA2gWR0B+6npV0cOtdX2UKGgGaAloD0MIMe4G0dq+YECUhpRSlGgVTegDaBZHQH8V2RzRx951fZQoaAZoCWgPQwgZINEEinFbQJSGlFKUaBVN6ANoFkdAfyXoaDPGAHV9lChoBmgJaA9DCN4FSgqsoGBAlIaUUpRoFU3oA2gWR0B/LDCFbmlqdX2UKGgGaAloD0MI3lZ6bTahVkCUhpRSlGgVTegDaBZHQH9KlIiC8OF1fZQoaAZoCWgPQwicTrLV5TthQJSGlFKUaBVN6ANoFkdAf0yLvCuU2XV9lChoBmgJaA9DCLTHC+lwD2JAlIaUUpRoFU3oA2gWR0B/W0E5hjOLdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3594dc0c5499fcf70cf34a2b1364588782d7fecb50208ad714b5a40b25376d39
|
3 |
+
size 147235
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1b55bb1560>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1b55bb15f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1b55bb1680>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1b55bb1710>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1b55bb17a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1b55bb1830>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1b55bb18c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1b55bb1950>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1b55bb19e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1b55bb1a70>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1b55bb1b00>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f1b55b891b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1657714478.383944,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAATQ/ZvZxGQT5ba36+DiYsvrMd8LwicZW9AAAAAAAAAABamIq9j0Ybuvus4rnCmxS4OfiuusroBTkAAIA/AACAP8hMi74keQI8d7RLu73CEDnlgpm9WiJuOgAAgD8AAIA/ZoyfvSk4JLpM5R85rZaUtbl8ljqxCDa4AACAPwAAgD8z0ay9FHiAuuPg4LsfnZo2Yv0xOsDJCrYAAIA/AACAPysNjr49oCg8Vg9xudP4Vzc2Xbm9EnqMOAAAgD8AAIA/ADmqvFzbP7oTbtK6q5hLtHkmXToaFfE5AACAPwAAgD/95ZY+8rxnP6SJyT0Ap82+VySiPi/xqjwAAAAAAAAAAM2aND24xq+5vowcu01O5LVALpI6b6s6OgAAgD8AAIA/OuN1vpnyYz5JRp09WUDavQ5FfD1HQxA9AAAAAAAAAABmWeO8F2G4P3GjDL8wYFY+mquwPLPkOT0AAAAAAAAAAIA+Ez5EPiY+g9R1vkCwKr6f9/g8bfXSvQAAAAAAAAAAAPvdPFxXObqSZ2451zfqNPKLmTsS5oq4AACAPwAAgD+zO5o+jlqZP+e3tj73P7++sFRzPiMQvL0AAAAAAAAAAICdNr2PClG6lhZyvIergDYk03s7EKzotQAAgD8AAIA/E0CRPim6PrwS1Tm6zHEjOCmyrb1Nu185AACAPwAAgD+UdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvoV1490fYkCUhpRSlIwBbJRN6AOMAXSUR0B4jbvmYBvKdX2UKGgGaAloD0MIecpquh6RYkCUhpRSlGgVTegDaBZHQHiYvhVENON1fZQoaAZoCWgPQwj5Tsx6MRg2QJSGlFKUaBVL32gWR0B4m4KKHfuUdX2UKGgGaAloD0MInGnC9hOcYUCUhpRSlGgVTegDaBZHQHikWCVbA1x1fZQoaAZoCWgPQwitLxLacsVcQJSGlFKUaBVN6ANoFkdAeMn8cMmWt3V9lChoBmgJaA9DCLslOWBXYx9AlIaUUpRoFUvfaBZHQHjOPbO/tY11fZQoaAZoCWgPQwi5bkp5LcRlQJSGlFKUaBVN6ANoFkdAeNk/Q0GeMHV9lChoBmgJaA9DCM6OVN/5QVtAlIaUUpRoFU3oA2gWR0B5RACyQgcMdX2UKGgGaAloD0MIFqHYCpq2YUCUhpRSlGgVTegDaBZHQHlHCGSIP9V1fZQoaAZoCWgPQwgjaw2l9iRcQJSGlFKUaBVN6ANoFkdAeUjchC+lCXV9lChoBmgJaA9DCE7U0twK41hAlIaUUpRoFU3oA2gWR0B5a9vm5lOHdX2UKGgGaAloD0MIW0BoPfytYUCUhpRSlGgVTegDaBZHQHlt7XxvvSd1fZQoaAZoCWgPQwjvrN12od5eQJSGlFKUaBVN6ANoFkdAeZWs5n13+3V9lChoBmgJaA9DCE57Ss4JImBAlIaUUpRoFU3oA2gWR0B5mXsmfGuLdX2UKGgGaAloD0MIN1X3yOY1Y0CUhpRSlGgVTegDaBZHQHmzT2Bas6t1fZQoaAZoCWgPQwieRe9UwC1dQJSGlFKUaBVN6ANoFkdAecRiEQGwA3V9lChoBmgJaA9DCFJkraHUBFVAlIaUUpRoFU3oA2gWR0B5ykLZzxPPdX2UKGgGaAloD0MICB9KtOS8VECUhpRSlGgVTegDaBZHQHnSRZyMkyF1fZQoaAZoCWgPQwiGPe3wVyJjQJSGlFKUaBVN6ANoFkdAed4bX6InB3V9lChoBmgJaA9DCAKBzqRNplNAlIaUUpRoFU3oA2gWR0B56fL9uP3jdX2UKGgGaAloD0MIQl2kUBauGUCUhpRSlGgVS+5oFkdAegeXko4MnnV9lChoBmgJaA9DCKkR+pn6pGBAlIaUUpRoFU3oA2gWR0B6D1v2oNutdX2UKGgGaAloD0MI2xX6YJmOYkCUhpRSlGgVTegDaBZHQHoTSnHeaa11fZQoaAZoCWgPQwi3YRQEDwZhQJSGlFKUaBVN6ANoFkdAeh1xiobXH3V9lChoBmgJaA9DCNf5t8t+bSPAlIaUUpRoFUv4aBZHQHoiIy9EkSp1fZQoaAZoCWgPQwhDkIMSZqBiQJSGlFKUaBVN6ANoFkdAeoOxNZeRgnV9lChoBmgJaA9DCEut9xttSmNAlIaUUpRoFU3oA2gWR0B6hidy1eBydX2UKGgGaAloD0MIhnXj3ZE6YkCUhpRSlGgVTegDaBZHQHqHt9Ujs2N1fZQoaAZoCWgPQwhjtmRVhPheQJSGlFKUaBVN6ANoFkdAeqcnfEXLvHV9lChoBmgJaA9DCL76eOg7rWJAlIaUUpRoFU3oA2gWR0B6qTC/GlyjdX2UKGgGaAloD0MIcjRHVn4DX0CUhpRSlGgVTegDaBZHQHrNvacqe9V1fZQoaAZoCWgPQwhJg9vaQlJhQJSGlFKUaBVN6ANoFkdAetE6NlyzX3V9lChoBmgJaA9DCHkB9tEpSWRAlIaUUpRoFU3oA2gWR0B66ieVcD8tdX2UKGgGaAloD0MI4nX9gt0WXUCUhpRSlGgVTegDaBZHQHr69CJGe+V1fZQoaAZoCWgPQwgnoImw4b5ZQJSGlFKUaBVN6ANoFkdAewCsKb8WK3V9lChoBmgJaA9DCHHJcad0SDpAlIaUUpRoFUv7aBZHQHsP+KTB68h1fZQoaAZoCWgPQwjB/1ayY85ZQJSGlFKUaBVN6ANoFkdAexUtnf2saXV9lChoBmgJaA9DCI7qdCDr8TTAlIaUUpRoFUuuaBZHQHskqYAsCkp1fZQoaAZoCWgPQwjWjXdHxkRdQJSGlFKUaBVN6ANoFkdAe0NFb3XZoXV9lChoBmgJaA9DCGe1wB4TlGFAlIaUUpRoFU3oA2gWR0B7S93xFy7xdX2UKGgGaAloD0MIX9ODglJcPECUhpRSlGgVS+BoFkdAe002IwdsBXV9lChoBmgJaA9DCDl7Z7RV5VtAlIaUUpRoFU3oA2gWR0B7UEBIWgvldX2UKGgGaAloD0MI7KAS1zHhZ0CUhpRSlGgVTU8BaBZHQHtTR9Tgl4V1fZQoaAZoCWgPQwi6ZvLNtqlkQJSGlFKUaBVN6ANoFkdAe1oiADq4Y3V9lChoBmgJaA9DCL5MFCF1XldAlIaUUpRoFU3oA2gWR0B7XsB0ZFXrdX2UKGgGaAloD0MIeozyzMu2XkCUhpRSlGgVTegDaBZHQHtzGuX/o7p1fZQoaAZoCWgPQwgLQnkfR2FeQJSGlFKUaBVN6ANoFkdAe8BT/ACW/3V9lChoBmgJaA9DCHzT9NkBM2JAlIaUUpRoFU3oA2gWR0B7wa2OQyRCdX2UKGgGaAloD0MIJuFCHsEjQsCUhpRSlGgVS81oFkdAe8XkPMB6r3V9lChoBmgJaA9DCMX/HVGhZkBAlIaUUpRoFUviaBZHQHvMekcjqwB1fZQoaAZoCWgPQwhXl1MCYg1hQJSGlFKUaBVN6ANoFkdAe94Yw7DEWXV9lChoBmgJaA9DCLkANEqXA2VAlIaUUpRoFU3oA2gWR0B739fMOf/WdX2UKGgGaAloD0MIg6eQK/WsJMCUhpRSlGgVS/VoFkdAe/ygf2bobHV9lChoBmgJaA9DCFeyYyMQjWFAlIaUUpRoFU3oA2gWR0B8A8Mz/IbPdX2UKGgGaAloD0MIE+8AT1qeQkCUhpRSlGgVS/poFkdAfBvkH2RJVnV9lChoBmgJaA9DCFX5npGItmBAlIaUUpRoFU3oA2gWR0B8IT67/XGwdX2UKGgGaAloD0MIGt1B7EyfWkCUhpRSlGgVTegDaBZHQHxK/Ot4iX91fZQoaAZoCWgPQwgcKPBOPnxbQJSGlFKUaBVN6ANoFkdAfGR6gdwNsnV9lChoBmgJaA9DCPnWh/VGoVhAlIaUUpRoFU3oA2gWR0B8j6z4UN8WdX2UKGgGaAloD0MI93ghHZ7RZUCUhpRSlGgVTegDaBZHQHybOaWom5V1fZQoaAZoCWgPQwg+srlqngRcQJSGlFKUaBVN6ANoFkdAfJx5WilBQnV9lChoBmgJaA9DCOSByCJNvFpAlIaUUpRoFU3oA2gWR0B8qf6zmfXgdX2UKGgGaAloD0MIlX7C2a1RYECUhpRSlGgVTegDaBZHQHyvgYHgP3B1fZQoaAZoCWgPQwiTAgtgyqhlQJSGlFKUaBVN6ANoFkdAfMW+oLofS3V9lChoBmgJaA9DCGX7kLdc+11AlIaUUpRoFU3oA2gWR0B8yFDArQPadX2UKGgGaAloD0MIXmVtU7y7YkCUhpRSlGgVTegDaBZHQHzJ0E9t/F11fZQoaAZoCWgPQwjsMCb9vdNcQJSGlFKUaBVN6ANoFkdAfR/kvsZ5zHV9lChoBmgJaA9DCFWgFoOHGR5AlIaUUpRoFU0QAWgWR0B9IuHVPN3XdX2UKGgGaAloD0MIxhSscTZYXkCUhpRSlGgVTegDaBZHQH0w810knkV1fZQoaAZoCWgPQwjtRh/zAVJjQJSGlFKUaBVN6ANoFkdAfUsf5ULlWHV9lChoBmgJaA9DCByz7EngDGrAlIaUUpRoFU36AWgWR0B9TLAO8TSLdX2UKGgGaAloD0MIUg/R6A4IXkCUhpRSlGgVTegDaBZHQH1Q3Fkxyn11fZQoaAZoCWgPQwgYQPhQooNkQJSGlFKUaBVN6ANoFkdAfWW7GvOhTXV9lChoBmgJaA9DCMAEbt1NtmBAlIaUUpRoFU3oA2gWR0B9aplf7aZhdX2UKGgGaAloD0MISMMpc/OlM0CUhpRSlGgVS/RoFkdAfYbIwudwvXV9lChoBmgJaA9DCG7CvTJvfVxAlIaUUpRoFU3oA2gWR0B9kf+dbxEwdX2UKGgGaAloD0MIRkHw+PYLYkCUhpRSlGgVTegDaBZHQH2q3LNfPX11fZQoaAZoCWgPQwg6eCY0SS9eQJSGlFKUaBVN6ANoFkdAfdcW3Sa3JHV9lChoBmgJaA9DCKc+kLxzLldAlIaUUpRoFU3oA2gWR0B951tbcGkfdX2UKGgGaAloD0MIQKTfvo7EYUCUhpRSlGgVTegDaBZHQH3tmuoxYaJ1fZQoaAZoCWgPQwjC3O7lPvBjQJSGlFKUaBVN6ANoFkdAfgdm7aqS5nV9lChoBmgJaA9DCE2BzM4ixGdAlIaUUpRoFU3oA2gWR0B+Ckb70nPWdX2UKGgGaAloD0MIcZNRZRhQUUCUhpRSlGgVTegDaBZHQH4MFJHy3Ct1fZQoaAZoCWgPQwiHi9zTVRhiQJSGlFKUaBVN6ANoFkdAfmQLB9Cu2nV9lChoBmgJaA9DCBZruMi94mRAlIaUUpRoFU3oA2gWR0B+Z5qtYB/7dX2UKGgGaAloD0MI4Cu69RqLYECUhpRSlGgVTegDaBZHQH53YbfgrH51fZQoaAZoCWgPQwhsskY9RAVbQJSGlFKUaBVN6ANoFkdAfpOsXzlLe3V9lChoBmgJaA9DCAjovpzZakFAlIaUUpRoFU0gAWgWR0B+lCO7xusLdX2UKGgGaAloD0MISpnU0AZgXUCUhpRSlGgVTegDaBZHQH6Zy48U21l1fZQoaAZoCWgPQwiLql/p/B1jQJSGlFKUaBVN6ANoFkdAfq8J2t+1B3V9lChoBmgJaA9DCIaOHVTi7FpAlIaUUpRoFU3oA2gWR0B+s4EgW8AadX2UKGgGaAloD0MIIPDAAMKhW0CUhpRSlGgVTegDaBZHQH7MnSncclx1fZQoaAZoCWgPQwhMF2L1R9peQJSGlFKUaBVN6ANoFkdAftXSFXaJynV9lChoBmgJaA9DCOvGuyPjv2FAlIaUUpRoFU3oA2gWR0B+6npV0cOtdX2UKGgGaAloD0MIMe4G0dq+YECUhpRSlGgVTegDaBZHQH8V2RzRx951fZQoaAZoCWgPQwgZINEEinFbQJSGlFKUaBVN6ANoFkdAfyXoaDPGAHV9lChoBmgJaA9DCN4FSgqsoGBAlIaUUpRoFU3oA2gWR0B/LDCFbmlqdX2UKGgGaAloD0MI3lZ6bTahVkCUhpRSlGgVTegDaBZHQH9KlIiC8OF1fZQoaAZoCWgPQwicTrLV5TthQJSGlFKUaBVN6ANoFkdAf0yLvCuU2XV9lChoBmgJaA9DCLTHC+lwD2JAlIaUUpRoFU3oA2gWR0B/W0E5hjOLdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec6817e0bae2fa00c45d336922dc869afb7c09bfe7b2ed4bdeee80387aa4e5bc
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df33323be13ff45e2236378d76ae1bfb9733cf613f19559cf9914d5b5f5c9290
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (179 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 114.27958136323032, "std_reward": 94.59819846758094, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-13T12:33:46.972033"}
|