File size: 1,198 Bytes
023f1d7
 
022aac4
023f1d7
483da65
023f1d7
022aac4
023f1d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
tags: autotrain
language: ko
widget:
- text: "개념 집에다 ctrl+z헤놓고 왔나"
datasets:
- jason9693/APEACH
co2_eq_emissions: 0.01856239042036965
---

# Model Trained Using AutoTrain

- Problem type: Binary Classification
- Model ID: 742522663
- CO2 Emissions (in grams): 0.01856239042036965

## Validation Metrics

- Loss: 0.4798508286476135
- Accuracy: 0.7740053050397878
- Precision: 0.7236622073578596
- Recall: 0.9006243496357961
- AUC: 0.8798210006261515
- F1: 0.8025034770514604

## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/jason9693/autotrain-kor_hate_eval-742522663
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("jason9693/autotrain-kor_hate_eval-742522663", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("jason9693/autotrain-kor_hate_eval-742522663", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
```