File size: 1,198 Bytes
023f1d7 022aac4 023f1d7 483da65 023f1d7 022aac4 023f1d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
tags: autotrain
language: ko
widget:
- text: "개념 집에다 ctrl+z헤놓고 왔나"
datasets:
- jason9693/APEACH
co2_eq_emissions: 0.01856239042036965
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 742522663
- CO2 Emissions (in grams): 0.01856239042036965
## Validation Metrics
- Loss: 0.4798508286476135
- Accuracy: 0.7740053050397878
- Precision: 0.7236622073578596
- Recall: 0.9006243496357961
- AUC: 0.8798210006261515
- F1: 0.8025034770514604
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/jason9693/autotrain-kor_hate_eval-742522663
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("jason9693/autotrain-kor_hate_eval-742522663", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("jason9693/autotrain-kor_hate_eval-742522663", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
``` |