from typing import Dict, List, Any import torch from transformers import AutoProcessor, Pix2StructVisionModel from PIL import Image import pdb import requests MODEL = "google/pix2struct-screen2words-large" class EndpointHandler(): def __init__(self, path=""): #self.processor = AutoProcessor.from_pretrained("jasper-lu/pix2struct_embedding") #self.model = MarkupLMModel.from_pretrained("jasper-lu/pix2struct_embedding") self.processor = AutoProcessor.from_pretrained(MODEL) self.processor.image_processor.is_vqa = False self.model = Pix2StructVisionModel.from_pretrained(MODEL).cuda() def __call__(self, data: Any) -> List[List[Dict[str, float]]]: url = data.pop("inputs", data) device = "cuda" image = Image.open(requests.get(url, stream=True).raw) inputs = self.processor(images=image, return_tensors="pt").to(device) with torch.no_grad(): outputs = self.model(**inputs) last_hidden_state = outputs['last_hidden_state'] embedding = torch.mean(last_hidden_state, dim=1).flatten().tolist() return {"embedding": embedding} """ handler = EndpointHandler() output = handler({"inputs": "https://figma-staging-api.s3.us-west-2.amazonaws.com/images/a8c6a0cc-c022-4f3a-9fc5-ac8582c964dd"}) print(output) """