File size: 1,405 Bytes
5b2188c
a42bf1d
 
 
 
 
 
5b2188c
 
a42bf1d
5b2188c
a42bf1d
5b2188c
a42bf1d
5b2188c
a42bf1d
 
 
 
5b2188c
a42bf1d
5b2188c
a42bf1d
 
5b2188c
a42bf1d
 
5b2188c
a42bf1d
 
 
 
 
 
 
5b2188c
 
 
a42bf1d
 
 
5b2188c
a42bf1d
5b2188c
a42bf1d
 
 
5b2188c
a42bf1d
5b2188c
a42bf1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
language: en
tags:
- phi-2
- openassistant
- conversational
license: mit
---

# Phi-2 Fine-tuned on OpenAssistant

This model is a fine-tuned version of Microsoft's Phi-2 model, trained on the OpenAssistant dataset using QLoRA techniques.

## Model Description

- **Base Model:** Microsoft Phi-2
- **Training Data:** OpenAssistant Conversations Dataset
- **Training Method:** QLoRA (Quantized Low-Rank Adaptation)
- **Use Case:** Conversational AI and text generation

## Usage

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("your-username/phi2-finetuned-openassistant")
tokenizer = AutoTokenizer.from_pretrained("your-username/phi2-finetuned-openassistant")

# Generate text
input_text = "Hello, how are you?"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

## Training Details

- Fine-tuned for 1 epoch
- Used 4-bit quantization for efficient training
- Implemented gradient checkpointing and mixed precision training

## Limitations

- The model inherits limitations from both Phi-2 and the OpenAssistant dataset
- May produce incorrect or biased information
- Should be used with appropriate content filtering and moderation

## License

This model is released under the MIT License.