File size: 1,405 Bytes
5b2188c a42bf1d 5b2188c a42bf1d 5b2188c a42bf1d 5b2188c a42bf1d 5b2188c a42bf1d 5b2188c a42bf1d 5b2188c a42bf1d 5b2188c a42bf1d 5b2188c a42bf1d 5b2188c a42bf1d 5b2188c a42bf1d 5b2188c a42bf1d 5b2188c a42bf1d 5b2188c a42bf1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
language: en
tags:
- phi-2
- openassistant
- conversational
license: mit
---
# Phi-2 Fine-tuned on OpenAssistant
This model is a fine-tuned version of Microsoft's Phi-2 model, trained on the OpenAssistant dataset using QLoRA techniques.
## Model Description
- **Base Model:** Microsoft Phi-2
- **Training Data:** OpenAssistant Conversations Dataset
- **Training Method:** QLoRA (Quantized Low-Rank Adaptation)
- **Use Case:** Conversational AI and text generation
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("your-username/phi2-finetuned-openassistant")
tokenizer = AutoTokenizer.from_pretrained("your-username/phi2-finetuned-openassistant")
# Generate text
input_text = "Hello, how are you?"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
## Training Details
- Fine-tuned for 1 epoch
- Used 4-bit quantization for efficient training
- Implemented gradient checkpointing and mixed precision training
## Limitations
- The model inherits limitations from both Phi-2 and the OpenAssistant dataset
- May produce incorrect or biased information
- Should be used with appropriate content filtering and moderation
## License
This model is released under the MIT License.
|