jatinmehra
commited on
Commit
•
5584c5d
1
Parent(s):
942fa87
initial
Browse files- README.md +69 -0
- app.py +108 -0
- model/added_tokens.json +3 -0
- model/config.json +31 -0
- model/merges.txt +0 -0
- model/model.safetensors +3 -0
- model/special_tokens_map.json +49 -0
- model/tokenizer.json +0 -0
- model/tokenizer_config.json +176 -0
- model/vocab.json +0 -0
- plagairism-fine-tuning using LLM.ipynb +0 -0
- test-model.ipynb +329 -0
README.md
CHANGED
@@ -1,3 +1,72 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
datasets:
|
4 |
+
- nvidia/HelpSteer2
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
- recall
|
11 |
+
base_model:
|
12 |
+
- HuggingFaceTB/SmolLM2-135M-Instruct
|
13 |
+
new_version: jatinmehra/smolLM-fined-tuned-for-PLAGAIRISM-Detection
|
14 |
+
pipeline_tag: text-classification
|
15 |
+
library_name: transformers
|
16 |
+
tags:
|
17 |
+
- legal
|
18 |
+
- plagiarism-detection
|
19 |
---
|
20 |
+
# SmolLM Fine-Tuned for Plagiarism Detection
|
21 |
+
|
22 |
+
This repository hosts a fine-tuned version of SmolLM (135M Parameters) for detecting plagiarism by classifying sentence pairs as either plagiarized or non-plagiarized. Fine-tuning was performed on the [MIT Plagiarism Detection Dataset](https://www.kaggle.com/datasets/ruvelpereira/mit-plagairism-detection-dataset) to enhance the model’s accuracy and performance in identifying textual similarities.
|
23 |
+
|
24 |
+
## Model Information
|
25 |
+
|
26 |
+
- **Base Model**: HuggingFaceTB/SmolLM2-135M-Instruct
|
27 |
+
- **Fine-tuned Model Name**: `jatinmehra/smolLM-fine-tuned-for-plagiarism-detection`
|
28 |
+
- **License**: MIT
|
29 |
+
- **Language**: English
|
30 |
+
- **Task**: Text Classification
|
31 |
+
- **Metrics**: Accuracy, F1 Score, Recall
|
32 |
+
|
33 |
+
## Dataset
|
34 |
+
|
35 |
+
The model was fine-tuned on the MIT Plagiarism Detection Dataset, which provides pairs of sentences labeled to indicate whether one is a rephrased version of the other (i.e., plagiarized). This dataset is suited for sentence-level similarity detection, and the labels (`1` for plagiarized and `0` for non-plagiarized) offer a straightforward approach to training for binary classification.
|
36 |
+
|
37 |
+
## Training Procedure
|
38 |
+
|
39 |
+
The fine-tuning was done using the `transformers` library from Hugging Face. Key details include:
|
40 |
+
|
41 |
+
- **Model Architecture**: The model was modified for sequence classification with two output labels.
|
42 |
+
- **Optimizer**: AdamW was used to handle optimization, with a learning rate of 2e-5.
|
43 |
+
- **Loss Function**: Cross-Entropy Loss was used as the objective function.
|
44 |
+
- **Batch Size**: Set to 16 for memory and performance balance.
|
45 |
+
- **Epochs**: Trained for 3 epochs.
|
46 |
+
- **Padding**: A custom padding token was added to align with SmolLM’s requirements, ensuring smooth tokenization.
|
47 |
+
|
48 |
+
Training involved a DataLoader that fed sentence pairs into the model, tokenized with attention masking, truncation, and padding. After training, the model achieved a high accuracy score, around 99.66% on the training dataset.
|
49 |
+
|
50 |
+
## Usage
|
51 |
+
|
52 |
+
This model can be employed directly within the Hugging Face Transformers library to classify sentence pairs as plagiarized or non-plagiarized. Simply load the model and tokenizer from the `jatinmehra/smolLM-fine-tuned-for-plagiarism-detection` repository, and provide sentence pairs as inputs. The model’s output logits can be interpreted to determine whether plagiarism is detected.
|
53 |
+
|
54 |
+
## Evaluation
|
55 |
+
|
56 |
+
During evaluation, the model performed robustly with the following metrics:
|
57 |
+
|
58 |
+
- **Accuracy**: Approximately **99.66%** on the training set | **100%** on test set
|
59 |
+
- **Other Metrics**: f1: **1.0** recall: **1.0**
|
60 |
+
|
61 |
+
## Model and Tokenizer Saving
|
62 |
+
|
63 |
+
Upon completion of fine-tuning, the model and tokenizer were saved for deployment and ease of loading in future projects. They can be loaded from Hugging Face or saved locally for custom applications.
|
64 |
+
|
65 |
+
## License
|
66 |
+
|
67 |
+
This model and associated code are released under the MIT License, allowing for both personal and commercial use.
|
68 |
+
|
69 |
+
### Connect with Me
|
70 |
+
|
71 |
+
I appreciate your support and am happy to connect!
|
72 |
+
[GitHub](https://github.com/Jatin-Mehra119) | [Email]([email protected]) | [LinkedIn](https://www.linkedin.com/in/jatin-mehra119/) | [Portfolio](https://jatin-mehra119.github.io/Profile/)
|
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import GPT2Tokenizer, LlamaForSequenceClassification
|
4 |
+
import fitz # PyMuPDF for extracting text from PDFs
|
5 |
+
import io
|
6 |
+
from torch.utils.data import Dataset
|
7 |
+
from sklearn.metrics import classification_report
|
8 |
+
|
9 |
+
# Load the tokenizer and model
|
10 |
+
model_path = "model"
|
11 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_path, local_files_only=True)
|
12 |
+
model = LlamaForSequenceClassification.from_pretrained(model_path, local_files_only=True)
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
model = model.to(device)
|
17 |
+
|
18 |
+
# Function to extract text from a PDF
|
19 |
+
def extract_text_from_pdf(pdf_file):
|
20 |
+
# Read the PDF file as a binary stream
|
21 |
+
pdf_bytes = pdf_file.read()
|
22 |
+
|
23 |
+
# Using BytesIO to convert the binary data into a file-like object
|
24 |
+
pdf_stream = io.BytesIO(pdf_bytes)
|
25 |
+
|
26 |
+
# Open the PDF using PyMuPDF from the file-like object
|
27 |
+
doc = fitz.open(stream=pdf_stream, filetype="pdf")
|
28 |
+
|
29 |
+
text = ""
|
30 |
+
for page in doc:
|
31 |
+
text += page.get_text("text")
|
32 |
+
|
33 |
+
return text
|
34 |
+
|
35 |
+
# Function to preprocess and tokenize the input text
|
36 |
+
def preprocess_text(text1, text2):
|
37 |
+
inputs = tokenizer(
|
38 |
+
text1, text2,
|
39 |
+
add_special_tokens=True,
|
40 |
+
max_length=128,
|
41 |
+
padding='max_length',
|
42 |
+
truncation=True,
|
43 |
+
return_tensors="pt"
|
44 |
+
)
|
45 |
+
return inputs
|
46 |
+
|
47 |
+
# Dataset class (similar to your existing one)
|
48 |
+
class PlagiarismDataset(Dataset):
|
49 |
+
def __init__(self, text1, text2, tokenizer):
|
50 |
+
self.text1 = text1
|
51 |
+
self.text2 = text2
|
52 |
+
self.tokenizer = tokenizer
|
53 |
+
|
54 |
+
def __len__(self):
|
55 |
+
return len(self.text1)
|
56 |
+
|
57 |
+
def __getitem__(self, idx):
|
58 |
+
inputs = preprocess_text(self.text1[idx], self.text2[idx])
|
59 |
+
return {
|
60 |
+
'input_ids': inputs['input_ids'].squeeze(0),
|
61 |
+
'attention_mask': inputs['attention_mask'].squeeze(0)
|
62 |
+
}
|
63 |
+
|
64 |
+
# Function to detect plagiarism using the model
|
65 |
+
def detect_plagiarism(text1, text2):
|
66 |
+
dataset = PlagiarismDataset(text1, text2, tokenizer)
|
67 |
+
data_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False)
|
68 |
+
|
69 |
+
predictions = []
|
70 |
+
with torch.no_grad():
|
71 |
+
for batch in data_loader:
|
72 |
+
input_ids = batch['input_ids'].to(device)
|
73 |
+
attention_mask = batch['attention_mask'].to(device)
|
74 |
+
|
75 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
76 |
+
preds = torch.argmax(outputs.logits, dim=1)
|
77 |
+
|
78 |
+
predictions.append(preds.item())
|
79 |
+
|
80 |
+
return predictions[0]
|
81 |
+
|
82 |
+
# Streamlit UI
|
83 |
+
st.title("Plagiarism Detection using LLM")
|
84 |
+
st.write("Upload two PDFs for plagiarism detection.")
|
85 |
+
|
86 |
+
# Upload PDFs
|
87 |
+
pdf_file1 = st.file_uploader("Upload the first PDF", type="pdf")
|
88 |
+
pdf_file2 = st.file_uploader("Upload the second PDF", type="pdf")
|
89 |
+
|
90 |
+
if pdf_file1 and pdf_file2:
|
91 |
+
# Extract text from PDFs
|
92 |
+
text1 = extract_text_from_pdf(pdf_file1)
|
93 |
+
text2 = extract_text_from_pdf(pdf_file2)
|
94 |
+
|
95 |
+
# Display some text from the PDFs for context
|
96 |
+
st.subheader("Text from the first document:")
|
97 |
+
st.text(text1[:1000]) # Display the first 1000 characters of the document
|
98 |
+
st.subheader("Text from the second document:")
|
99 |
+
st.text(text2[:1000])
|
100 |
+
|
101 |
+
# Detect plagiarism
|
102 |
+
result = detect_plagiarism([text1], [text2])
|
103 |
+
|
104 |
+
# Display the result
|
105 |
+
if result == 1:
|
106 |
+
st.success("Plagiarism detected!")
|
107 |
+
else:
|
108 |
+
st.success("No plagiarism detected.")
|
model/added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[PAD]": 49152
|
3 |
+
}
|
model/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "HuggingFaceTB/SmolLM-135M",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 0,
|
9 |
+
"eos_token_id": 0,
|
10 |
+
"head_dim": 64,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 576,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 1536,
|
15 |
+
"max_position_embeddings": 2048,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 9,
|
19 |
+
"num_hidden_layers": 30,
|
20 |
+
"num_key_value_heads": 3,
|
21 |
+
"pad_token_id": 49152,
|
22 |
+
"pretraining_tp": 1,
|
23 |
+
"rms_norm_eps": 1e-05,
|
24 |
+
"rope_scaling": null,
|
25 |
+
"rope_theta": 10000.0,
|
26 |
+
"tie_word_embeddings": true,
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.45.1",
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 49153
|
31 |
+
}
|
model/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:037f0e1d8903ff226c57c41d8419a5fa9648f7d50e9d093d5bc571139762b30e
|
3 |
+
size 538097400
|
model/special_tokens_map.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|endoftext|>",
|
4 |
+
"<|im_start|>",
|
5 |
+
"<|im_end|>",
|
6 |
+
"<repo_name>",
|
7 |
+
"<reponame>",
|
8 |
+
"<file_sep>",
|
9 |
+
"<filename>",
|
10 |
+
"<gh_stars>",
|
11 |
+
"<issue_start>",
|
12 |
+
"<issue_comment>",
|
13 |
+
"<issue_closed>",
|
14 |
+
"<jupyter_start>",
|
15 |
+
"<jupyter_text>",
|
16 |
+
"<jupyter_code>",
|
17 |
+
"<jupyter_output>",
|
18 |
+
"<jupyter_script>",
|
19 |
+
"<empty_output>"
|
20 |
+
],
|
21 |
+
"bos_token": {
|
22 |
+
"content": "<|endoftext|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
},
|
28 |
+
"eos_token": {
|
29 |
+
"content": "<|endoftext|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
},
|
35 |
+
"pad_token": {
|
36 |
+
"content": "[PAD]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false
|
41 |
+
},
|
42 |
+
"unk_token": {
|
43 |
+
"content": "<|endoftext|>",
|
44 |
+
"lstrip": false,
|
45 |
+
"normalized": false,
|
46 |
+
"rstrip": false,
|
47 |
+
"single_word": false
|
48 |
+
}
|
49 |
+
}
|
model/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/tokenizer_config.json
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<repo_name>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "<reponame>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"5": {
|
45 |
+
"content": "<file_sep>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"6": {
|
53 |
+
"content": "<filename>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"7": {
|
61 |
+
"content": "<gh_stars>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"8": {
|
69 |
+
"content": "<issue_start>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"9": {
|
77 |
+
"content": "<issue_comment>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"10": {
|
85 |
+
"content": "<issue_closed>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"11": {
|
93 |
+
"content": "<jupyter_start>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"12": {
|
101 |
+
"content": "<jupyter_text>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"13": {
|
109 |
+
"content": "<jupyter_code>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"14": {
|
117 |
+
"content": "<jupyter_output>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"15": {
|
125 |
+
"content": "<jupyter_script>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"16": {
|
133 |
+
"content": "<empty_output>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
},
|
140 |
+
"49152": {
|
141 |
+
"content": "[PAD]",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": true
|
147 |
+
}
|
148 |
+
},
|
149 |
+
"additional_special_tokens": [
|
150 |
+
"<|endoftext|>",
|
151 |
+
"<|im_start|>",
|
152 |
+
"<|im_end|>",
|
153 |
+
"<repo_name>",
|
154 |
+
"<reponame>",
|
155 |
+
"<file_sep>",
|
156 |
+
"<filename>",
|
157 |
+
"<gh_stars>",
|
158 |
+
"<issue_start>",
|
159 |
+
"<issue_comment>",
|
160 |
+
"<issue_closed>",
|
161 |
+
"<jupyter_start>",
|
162 |
+
"<jupyter_text>",
|
163 |
+
"<jupyter_code>",
|
164 |
+
"<jupyter_output>",
|
165 |
+
"<jupyter_script>",
|
166 |
+
"<empty_output>"
|
167 |
+
],
|
168 |
+
"bos_token": "<|endoftext|>",
|
169 |
+
"clean_up_tokenization_spaces": false,
|
170 |
+
"eos_token": "<|endoftext|>",
|
171 |
+
"model_max_length": 1000000000000000019884624838656,
|
172 |
+
"pad_token": "[PAD]",
|
173 |
+
"tokenizer_class": "GPT2Tokenizer",
|
174 |
+
"unk_token": "<|endoftext|>",
|
175 |
+
"vocab_size": 49152
|
176 |
+
}
|
model/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
plagairism-fine-tuning using LLM.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
test-model.ipynb
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"data": {
|
10 |
+
"text/plain": [
|
11 |
+
"LlamaForSequenceClassification(\n",
|
12 |
+
" (model): LlamaModel(\n",
|
13 |
+
" (embed_tokens): Embedding(49153, 576, padding_idx=49152)\n",
|
14 |
+
" (layers): ModuleList(\n",
|
15 |
+
" (0-29): 30 x LlamaDecoderLayer(\n",
|
16 |
+
" (self_attn): LlamaSdpaAttention(\n",
|
17 |
+
" (q_proj): Linear(in_features=576, out_features=576, bias=False)\n",
|
18 |
+
" (k_proj): Linear(in_features=576, out_features=192, bias=False)\n",
|
19 |
+
" (v_proj): Linear(in_features=576, out_features=192, bias=False)\n",
|
20 |
+
" (o_proj): Linear(in_features=576, out_features=576, bias=False)\n",
|
21 |
+
" (rotary_emb): LlamaRotaryEmbedding()\n",
|
22 |
+
" )\n",
|
23 |
+
" (mlp): LlamaMLP(\n",
|
24 |
+
" (gate_proj): Linear(in_features=576, out_features=1536, bias=False)\n",
|
25 |
+
" (up_proj): Linear(in_features=576, out_features=1536, bias=False)\n",
|
26 |
+
" (down_proj): Linear(in_features=1536, out_features=576, bias=False)\n",
|
27 |
+
" (act_fn): SiLU()\n",
|
28 |
+
" )\n",
|
29 |
+
" (input_layernorm): LlamaRMSNorm((576,), eps=1e-05)\n",
|
30 |
+
" (post_attention_layernorm): LlamaRMSNorm((576,), eps=1e-05)\n",
|
31 |
+
" )\n",
|
32 |
+
" )\n",
|
33 |
+
" (norm): LlamaRMSNorm((576,), eps=1e-05)\n",
|
34 |
+
" (rotary_emb): LlamaRotaryEmbedding()\n",
|
35 |
+
" )\n",
|
36 |
+
" (score): Linear(in_features=576, out_features=2, bias=False)\n",
|
37 |
+
")"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
"execution_count": 1,
|
41 |
+
"metadata": {},
|
42 |
+
"output_type": "execute_result"
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"source": [
|
46 |
+
"from transformers import GPT2Tokenizer, LlamaForSequenceClassification\n",
|
47 |
+
"\n",
|
48 |
+
"# Load the GPT2 tokenizer and Llama model for sequence classification\n",
|
49 |
+
"model_path = r\"C:\\Users\\jatin\\OneDrive\\Desktop\\plagiarism-detection\\smolLM-fined-tuned-for-PLAGAIRISM-Detection\\model\"\n",
|
50 |
+
"tokenizer = GPT2Tokenizer.from_pretrained(model_path, local_files_only=True)\n",
|
51 |
+
"model = LlamaForSequenceClassification.from_pretrained(model_path, local_files_only=True)\n",
|
52 |
+
"\n",
|
53 |
+
"# Set model to evaluation mode\n",
|
54 |
+
"model.eval()"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": 2,
|
60 |
+
"metadata": {},
|
61 |
+
"outputs": [
|
62 |
+
{
|
63 |
+
"data": {
|
64 |
+
"text/html": [
|
65 |
+
"<div>\n",
|
66 |
+
"<style scoped>\n",
|
67 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
68 |
+
" vertical-align: middle;\n",
|
69 |
+
" }\n",
|
70 |
+
"\n",
|
71 |
+
" .dataframe tbody tr th {\n",
|
72 |
+
" vertical-align: top;\n",
|
73 |
+
" }\n",
|
74 |
+
"\n",
|
75 |
+
" .dataframe thead th {\n",
|
76 |
+
" text-align: right;\n",
|
77 |
+
" }\n",
|
78 |
+
"</style>\n",
|
79 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
80 |
+
" <thead>\n",
|
81 |
+
" <tr style=\"text-align: right;\">\n",
|
82 |
+
" <th></th>\n",
|
83 |
+
" <th>sentence1</th>\n",
|
84 |
+
" <th>sentence2</th>\n",
|
85 |
+
" <th>label</th>\n",
|
86 |
+
" </tr>\n",
|
87 |
+
" </thead>\n",
|
88 |
+
" <tbody>\n",
|
89 |
+
" <tr>\n",
|
90 |
+
" <th>0</th>\n",
|
91 |
+
" <td>A person on a horse jumps over a broken down a...</td>\n",
|
92 |
+
" <td>A person is at a diner, ordering an omelette.</td>\n",
|
93 |
+
" <td>0</td>\n",
|
94 |
+
" </tr>\n",
|
95 |
+
" <tr>\n",
|
96 |
+
" <th>1</th>\n",
|
97 |
+
" <td>A person on a horse jumps over a broken down a...</td>\n",
|
98 |
+
" <td>A person is outdoors, on a horse.</td>\n",
|
99 |
+
" <td>1</td>\n",
|
100 |
+
" </tr>\n",
|
101 |
+
" <tr>\n",
|
102 |
+
" <th>2</th>\n",
|
103 |
+
" <td>Children smiling and waving at camera</td>\n",
|
104 |
+
" <td>There are children present</td>\n",
|
105 |
+
" <td>1</td>\n",
|
106 |
+
" </tr>\n",
|
107 |
+
" <tr>\n",
|
108 |
+
" <th>3</th>\n",
|
109 |
+
" <td>Children smiling and waving at camera</td>\n",
|
110 |
+
" <td>The kids are frowning</td>\n",
|
111 |
+
" <td>0</td>\n",
|
112 |
+
" </tr>\n",
|
113 |
+
" <tr>\n",
|
114 |
+
" <th>4</th>\n",
|
115 |
+
" <td>A boy is jumping on skateboard in the middle o...</td>\n",
|
116 |
+
" <td>The boy skates down the sidewalk.</td>\n",
|
117 |
+
" <td>0</td>\n",
|
118 |
+
" </tr>\n",
|
119 |
+
" </tbody>\n",
|
120 |
+
"</table>\n",
|
121 |
+
"</div>"
|
122 |
+
],
|
123 |
+
"text/plain": [
|
124 |
+
" sentence1 \\\n",
|
125 |
+
"0 A person on a horse jumps over a broken down a... \n",
|
126 |
+
"1 A person on a horse jumps over a broken down a... \n",
|
127 |
+
"2 Children smiling and waving at camera \n",
|
128 |
+
"3 Children smiling and waving at camera \n",
|
129 |
+
"4 A boy is jumping on skateboard in the middle o... \n",
|
130 |
+
"\n",
|
131 |
+
" sentence2 label \n",
|
132 |
+
"0 A person is at a diner, ordering an omelette. 0 \n",
|
133 |
+
"1 A person is outdoors, on a horse. 1 \n",
|
134 |
+
"2 There are children present 1 \n",
|
135 |
+
"3 The kids are frowning 0 \n",
|
136 |
+
"4 The boy skates down the sidewalk. 0 "
|
137 |
+
]
|
138 |
+
},
|
139 |
+
"execution_count": 2,
|
140 |
+
"metadata": {},
|
141 |
+
"output_type": "execute_result"
|
142 |
+
}
|
143 |
+
],
|
144 |
+
"source": [
|
145 |
+
"import torch\n",
|
146 |
+
"import pandas as pd\n",
|
147 |
+
"\n",
|
148 |
+
"df = pd.read_csv(\"train_snli.txt\", delimiter='\\t', header=None, names=['sentence1', 'sentence2', 'label'])\n",
|
149 |
+
"\n",
|
150 |
+
"df.head()"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "code",
|
155 |
+
"execution_count": 3,
|
156 |
+
"metadata": {},
|
157 |
+
"outputs": [],
|
158 |
+
"source": [
|
159 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
160 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
161 |
+
"\n",
|
162 |
+
"class PlagiarismDataset(Dataset):\n",
|
163 |
+
" def __init__(self, df, tokenizer, max_length=128):\n",
|
164 |
+
" self.df = df\n",
|
165 |
+
" self.tokenizer = tokenizer\n",
|
166 |
+
" self.max_length = max_length\n",
|
167 |
+
"\n",
|
168 |
+
" def __len__(self):\n",
|
169 |
+
" return len(self.df)\n",
|
170 |
+
"\n",
|
171 |
+
" def __getitem__(self, index):\n",
|
172 |
+
" row = self.df.iloc[index]\n",
|
173 |
+
"\n",
|
174 |
+
" # Ensure the sentences are strings; convert or skip if not\n",
|
175 |
+
" sentence1 = str(row['sentence1']) if not pd.isna(row['sentence1']) else \"\"\n",
|
176 |
+
" sentence2 = str(row['sentence2']) if not pd.isna(row['sentence2']) else \"\"\n",
|
177 |
+
"\n",
|
178 |
+
" inputs = self.tokenizer(\n",
|
179 |
+
" sentence1, sentence2,\n",
|
180 |
+
" add_special_tokens=True,\n",
|
181 |
+
" max_length=self.max_length,\n",
|
182 |
+
" padding='max_length',\n",
|
183 |
+
" truncation=True,\n",
|
184 |
+
" return_tensors=\"pt\"\n",
|
185 |
+
" )\n",
|
186 |
+
"\n",
|
187 |
+
" label = torch.tensor(row['label'], dtype=torch.long)\n",
|
188 |
+
"\n",
|
189 |
+
" return {\n",
|
190 |
+
" 'input_ids': inputs['input_ids'].squeeze(0),\n",
|
191 |
+
" 'attention_mask': inputs['attention_mask'].squeeze(0),\n",
|
192 |
+
" 'label': label\n",
|
193 |
+
" }\n",
|
194 |
+
"\n",
|
195 |
+
"def collate_fn(batch):\n",
|
196 |
+
" input_ids = torch.stack([item['input_ids'] for item in batch])\n",
|
197 |
+
" attention_masks = torch.stack([item['attention_mask'] for item in batch])\n",
|
198 |
+
" labels = torch.stack([item['label'] for item in batch])\n",
|
199 |
+
"\n",
|
200 |
+
" return {\n",
|
201 |
+
" 'input_ids': input_ids,\n",
|
202 |
+
" 'attention_mask': attention_masks,\n",
|
203 |
+
" 'label': labels\n",
|
204 |
+
" }"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"cell_type": "code",
|
209 |
+
"execution_count": 4,
|
210 |
+
"metadata": {},
|
211 |
+
"outputs": [
|
212 |
+
{
|
213 |
+
"data": {
|
214 |
+
"text/plain": [
|
215 |
+
"device(type='cuda')"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
"execution_count": 4,
|
219 |
+
"metadata": {},
|
220 |
+
"output_type": "execute_result"
|
221 |
+
}
|
222 |
+
],
|
223 |
+
"source": [
|
224 |
+
"device"
|
225 |
+
]
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"cell_type": "code",
|
229 |
+
"execution_count": 5,
|
230 |
+
"metadata": {},
|
231 |
+
"outputs": [],
|
232 |
+
"source": [
|
233 |
+
"# Assuming you have a separate test set or validation set (e.g., df_test)\n",
|
234 |
+
"df_test = df[3_66_900:]\n",
|
235 |
+
"# Add padding token if not already\n",
|
236 |
+
"tokenizer.add_special_tokens({'pad_token': '[PAD]'})\n",
|
237 |
+
"\n",
|
238 |
+
"# Resize the model's token embeddings to fit the new tokenizer\n",
|
239 |
+
"model.resize_token_embeddings(len(tokenizer))\n",
|
240 |
+
"\n",
|
241 |
+
"# Create DataLoader for the test set\n",
|
242 |
+
"test_dataset = PlagiarismDataset(df_test, tokenizer)\n",
|
243 |
+
"test_data_loader = DataLoader(test_dataset, batch_size=16, shuffle=False, collate_fn=collate_fn)"
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"cell_type": "code",
|
248 |
+
"execution_count": 6,
|
249 |
+
"metadata": {},
|
250 |
+
"outputs": [
|
251 |
+
{
|
252 |
+
"name": "stdout",
|
253 |
+
"output_type": "stream",
|
254 |
+
"text": [
|
255 |
+
"Classification Report:\n",
|
256 |
+
" precision recall f1-score support\n",
|
257 |
+
"\n",
|
258 |
+
" 0 1.00 1.00 1.00 236\n",
|
259 |
+
" 1 1.00 1.00 1.00 237\n",
|
260 |
+
"\n",
|
261 |
+
" accuracy 1.00 473\n",
|
262 |
+
" macro avg 1.00 1.00 1.00 473\n",
|
263 |
+
"weighted avg 1.00 1.00 1.00 473\n",
|
264 |
+
"\n"
|
265 |
+
]
|
266 |
+
}
|
267 |
+
],
|
268 |
+
"source": [
|
269 |
+
"from sklearn.metrics import classification_report\n",
|
270 |
+
"# Function to evaluate model on the test set\n",
|
271 |
+
"# Set up device\n",
|
272 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
273 |
+
"\n",
|
274 |
+
"# Move model to the appropriate device\n",
|
275 |
+
"model = model.to(device)\n",
|
276 |
+
"\n",
|
277 |
+
"# Function to evaluate the model\n",
|
278 |
+
"def evaluate_model(model, data_loader):\n",
|
279 |
+
" model.eval() # Set model to evaluation mode\n",
|
280 |
+
" preds_list = []\n",
|
281 |
+
" labels_list = []\n",
|
282 |
+
"\n",
|
283 |
+
" with torch.no_grad(): # Disable gradient calculation for evaluation\n",
|
284 |
+
" for batch in data_loader:\n",
|
285 |
+
" # Move input tensors to the same device as the model\n",
|
286 |
+
" input_ids = batch['input_ids'].to(device)\n",
|
287 |
+
" attention_mask = batch['attention_mask'].to(device)\n",
|
288 |
+
" labels = batch['label'].to(device)\n",
|
289 |
+
" \n",
|
290 |
+
" # Get model outputs\n",
|
291 |
+
" outputs = model(input_ids=input_ids, attention_mask=attention_mask)\n",
|
292 |
+
" preds = torch.argmax(outputs.logits, dim=1)\n",
|
293 |
+
"\n",
|
294 |
+
" # Append predictions and true labels to respective lists\n",
|
295 |
+
" preds_list.extend(preds.cpu().numpy())\n",
|
296 |
+
" labels_list.extend(labels.cpu().numpy())\n",
|
297 |
+
" \n",
|
298 |
+
" # Compute evaluation metrics\n",
|
299 |
+
" from sklearn.metrics import classification_report\n",
|
300 |
+
" report = classification_report(labels_list, preds_list)\n",
|
301 |
+
" print(\"Classification Report:\\n\", report)\n",
|
302 |
+
"\n",
|
303 |
+
"# Evaluate the model\n",
|
304 |
+
"evaluate_model(model, test_data_loader)"
|
305 |
+
]
|
306 |
+
}
|
307 |
+
],
|
308 |
+
"metadata": {
|
309 |
+
"kernelspec": {
|
310 |
+
"display_name": "LLM",
|
311 |
+
"language": "python",
|
312 |
+
"name": "python3"
|
313 |
+
},
|
314 |
+
"language_info": {
|
315 |
+
"codemirror_mode": {
|
316 |
+
"name": "ipython",
|
317 |
+
"version": 3
|
318 |
+
},
|
319 |
+
"file_extension": ".py",
|
320 |
+
"mimetype": "text/x-python",
|
321 |
+
"name": "python",
|
322 |
+
"nbconvert_exporter": "python",
|
323 |
+
"pygments_lexer": "ipython3",
|
324 |
+
"version": "3.9.20"
|
325 |
+
}
|
326 |
+
},
|
327 |
+
"nbformat": 4,
|
328 |
+
"nbformat_minor": 2
|
329 |
+
}
|