File size: 7,829 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import tqdm
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import nerfacc

import comfy.utils

from pytorch_msssim import SSIM, MS_SSIM

from kiui.op import safe_normalize
from kiui.cam import orbit_camera
from kiui.nn import MLP, trunc_exp

from shared_utils.image_utils import prepare_torch_img

class InstantNGP(nn.Module):
    def __init__(self, resolution=128, device="cuda"):
        super().__init__()
        from kiui.gridencoder import GridEncoder
        
        self.device = torch.device(device)
        self.ref_size_H = resolution
        self.ref_size_W = resolution
        
        self.render_step_size = 5e-3
        self.aabb = torch.tensor([-1.0, -1.0, -1.0, 1.0, 1.0, 1.0], device=self.device)
        self.estimator = nerfacc.OccGridEstimator(roi_aabb=self.aabb, resolution=64, levels=1)

        self.encoder_density = GridEncoder(num_levels=12) # VMEncoder(output_dim=16, mode='sum')
        self.encoder = GridEncoder(num_levels=12)
        self.mlp_density = MLP(self.encoder_density.output_dim, 1, 32, 2, bias=False)
        self.mlp = MLP(self.encoder.output_dim, 3, 32, 2, bias=False)
        
    def get_rays(self, pose, h, w, fovy, opengl=True):

        x, y = torch.meshgrid(
            torch.arange(w, device=pose.device),
            torch.arange(h, device=pose.device),
            indexing="xy",
        )
        x = x.flatten()
        y = y.flatten()

        cx = w * 0.5
        cy = h * 0.5

        focal = h * 0.5 / np.tan(0.5 * np.deg2rad(fovy))

        camera_dirs = F.pad(
            torch.stack(
                [
                    (x - cx + 0.5) / focal,
                    (y - cy + 0.5) / focal * (-1.0 if opengl else 1.0),
                ],
                dim=-1,
            ),
            (0, 1),
            value=(-1.0 if opengl else 1.0),
        )  # [hw, 3]

        rays_d = camera_dirs @ pose[:3, :3].transpose(0, 1)  # [hw, 3]
        rays_o = pose[:3, 3].unsqueeze(0).expand_as(rays_d) # [hw, 3]

        rays_o = rays_o.view(h, w, 3)
        rays_d = safe_normalize(rays_d).view(h, w, 3)

        return rays_o, rays_d
    
    def get_color(self, xs):
        return torch.sigmoid(self.mlp(self.encoder(xs.to(self.device))))
    
    def get_density(self, xs):
        # xs: [..., 3]
        xs = xs.to(self.device)
        prefix = xs.shape[:-1]
        xs = xs.view(-1, 3)
        feats = self.encoder_density(xs)
        density = trunc_exp(self.mlp_density(feats))
        density = density.view(*prefix, 1)
        return density
    
    def prepare_training(self, reference_images, reference_masks, reference_orbit_camera_poses, reference_orbit_camera_fovy):
        self.ref_imgs_num = len(reference_images)

        self.all_ref_cam_poses = reference_orbit_camera_poses
        self.ref_cam_fovy = reference_orbit_camera_fovy
        
        # prepare reference images and masks
        ref_imgs_torch_list = []
        ref_masks_torch_list = []
        for i in range(self.ref_imgs_num):
            ref_imgs_torch_list.append(prepare_torch_img(reference_images[i].unsqueeze(0), self.ref_size_H, self.ref_size_W, self.device))
            ref_masks_torch_list.append(prepare_torch_img(reference_masks[i].unsqueeze(2).unsqueeze(0), self.ref_size_H, self.ref_size_W, self.device))
            
        self.ref_imgs_torch = torch.cat(ref_imgs_torch_list, dim=0) # [N, 3, H, W]
        self.ref_masks_torch = torch.cat(ref_masks_torch_list, dim=0).squeeze(1) # [N, H, W]
        
    def render_nerf(self, pose, bg_color=1):
        
        pose = torch.from_numpy(pose.astype(np.float32)).to(self.device)
        
        # get rays
        rays_o, rays_d = self.get_rays(pose, self.ref_size_H, self.ref_size_W, self.ref_cam_fovy)
        hw = rays_o.shape[0] * rays_o.shape[1]
        rays_o = rays_o.view(hw, 3)
        rays_d = rays_d.view(hw, 3)
        
        # update occ grid
        if self.training:
            def occ_eval_fn(xs):
                sigmas = self.get_density(xs)
                return self.render_step_size * sigmas
            
            self.estimator.update_every_n_steps(self.render_step, occ_eval_fn=occ_eval_fn, occ_thre=0.01, n=8)
            self.render_step += 1

        # render
        def sigma_fn(t_starts, t_ends, ray_indices):
            t_origins = rays_o[ray_indices]
            t_dirs = rays_d[ray_indices]
            xs = t_origins + t_dirs * (t_starts + t_ends)[:, None] / 2.0
            sigmas = self.get_density(xs)
            return sigmas.squeeze(-1)

        with torch.no_grad():
            ray_indices, t_starts, t_ends = self.estimator.sampling(
                rays_o,
                rays_d,
                sigma_fn=sigma_fn,
                near_plane=0.01,
                far_plane=100,
                render_step_size=self.render_step_size,
                stratified=self.training,
                cone_angle=0,
            )

        t_origins = rays_o[ray_indices]
        t_dirs = rays_d[ray_indices]
        xs = t_origins + t_dirs * (t_starts + t_ends)[:, None] / 2.0
        sigmas = self.get_density(xs).squeeze(-1)
        rgbs = torch.sigmoid(self.mlp(self.encoder(xs)))

        n_rays=rays_o.shape[0]
        weights, t, alphas = nerfacc.render_weight_from_density(t_starts, t_ends, sigmas, ray_indices=ray_indices, n_rays=n_rays)
        color = nerfacc.accumulate_along_rays(weights, values=rgbs, ray_indices=ray_indices, n_rays=n_rays)
        alpha = nerfacc.accumulate_along_rays(weights, values=None, ray_indices=ray_indices, n_rays=n_rays)

        color = color + (1.0 - alpha) * bg_color

        color = color.view(self.ref_size_H, self.ref_size_W, 3).clamp(0, 1).permute(2, 0, 1).contiguous()
        alpha = alpha.view(self.ref_size_H, self.ref_size_W).clamp(0, 1).contiguous()
        
        return color, alpha

    def fit_nerf(self, iters=512, bg_color=1):

        optimizer = torch.optim.Adam([
            {'params': self.encoder_density.parameters(), 'lr': 1e-2},
            {'params': self.encoder.parameters(), 'lr': 1e-2},
            {'params': self.mlp_density.parameters(), 'lr': 1e-3},
            {'params': self.mlp.parameters(), 'lr': 1e-3},
        ])

        print(f"[INFO] fitting nerf...")
        self.render_step = 0
        
        ref_imgs_num_minus_1 = self.ref_imgs_num-1
        
        comfy_pbar = comfy.utils.ProgressBar(iters)
        pbar = tqdm.trange(iters)
        for step in pbar:
            
            i = random.randint(0, ref_imgs_num_minus_1)

            radius, elevation, azimuth, center_X, center_Y, center_Z = self.all_ref_cam_poses[i]
            
            orbit_target = np.array([center_X, center_Y, center_Z], dtype=np.float32)
            pose = orbit_camera(elevation, azimuth, radius, target=orbit_target)
            
            image_gt = self.ref_imgs_torch[i]   # [3, H, W]
            alpha_gt = self.ref_masks_torch[i]  # [H, W]
            image_pred, alpha_pred = self.render_nerf(pose, bg_color)

            # if i % 200 == 0:
            #     kiui.vis.plot_image(image_gt, alpha_gt, image_pred, alpha_pred)
            
            loss_mse = F.mse_loss(image_pred, image_gt) + 0.1 * F.mse_loss(alpha_pred, alpha_gt)
            loss = loss_mse #+ 0.1 * self.encoder_density.tv_loss() #+ 0.0001 * self.encoder_density.density_loss()
            #loss += self.lambda_ssim * (1 - self.ms_ssim_loss(image_gt, image_pred))

            loss.backward()
            self.encoder_density.grad_total_variation(1e-8)
        
            optimizer.step()
            optimizer.zero_grad()

            pbar.set_description(f"NeRF Fitting Loss = {loss_mse.item():.6f}")
            comfy_pbar.update_absolute(step + 1)
            
        torch.cuda.synchronize()
        
        print(f"[INFO] finished fitting nerf!")