File size: 10,408 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from abc import ABC, abstractmethod
from collections import OrderedDict
import numpy as np
import math
from scipy.spatial.transform import Rotation as R

import torch

from kiui.cam import orbit_camera

#{Key: [elevation, azimuth], ...}
ORBITPOSE_PRESET_DICT = OrderedDict([
    ("Custom",           [[0.0, 90.0, 0.0, 0.0, -90.0, 0.0], [-90.0, 0.0, 180.0, 90.0, 0.0, 0.0]]),
    ("CRM(6)",           [[0.0, 90.0, 0.0, 0.0, -90.0, 0.0], [-90.0, 0.0, 180.0, 90.0, 0.0, 0.0]]),
    ("Wonder3D(6)",      [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 45.0, 90.0, 180.0, -90.0, -45.0]]),
    ("Zero123Plus(6)",   [[-20.0, 10.0, -20.0, 10.0, -20.0, 10.0], [30.0, 90.0, 150.0, -150.0, -90.0, -30.0]]),
    ("Era3D(6)",         [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 45.0, 90.0, 180.0, -90.0, -45.0]]),
    ("MVDream(4)",       [[0.0, 0.0, 0.0, 0.0], [0.0, 90.0, 180.0, -90.0]]),
    ("Unique3D(4)",      [[0.0, 0.0, 0.0, 0.0], [0.0, 90.0, 180.0, -90.0]]),
    ("CharacterGen(4)",  [[0.0, 0.0, 0.0, 0.0], [-90.0, 180.0, 90.0, 0.0]]),
])
ELEVATION_MIN = -89.999
ELEVATION_MAX = 89.999
AZIMUTH_MIN = -180.0
AZIMUTH_MAX = 180.0

def dot(x, y):
    if isinstance(x, np.ndarray):
        return np.sum(x * y, -1, keepdims=True)
    else:
        return torch.sum(x * y, -1, keepdim=True)


def length(x, eps=1e-20):
    if isinstance(x, np.ndarray):
        return np.sqrt(np.maximum(np.sum(x * x, axis=-1, keepdims=True), eps))
    else:
        return torch.sqrt(torch.clamp(dot(x, x), min=eps))


def safe_normalize(x, eps=1e-20):
    return x / length(x, eps)


def look_at(campos, target, opengl=True):
    # campos: [N, 3], camera/eye position
    # target: [N, 3], object to look at
    # return: [N, 3, 3], rotation matrix
    if not opengl:
        # camera forward aligns with -z
        forward_vector = safe_normalize(target - campos)
        up_vector = np.array([0, 1, 0], dtype=np.float32)
        right_vector = safe_normalize(np.cross(forward_vector, up_vector))
        up_vector = safe_normalize(np.cross(right_vector, forward_vector))
    else:
        # camera forward aligns with +z
        forward_vector = safe_normalize(campos - target)
        up_vector = np.array([0, 1, 0], dtype=np.float32)
        right_vector = safe_normalize(np.cross(up_vector, forward_vector))
        up_vector = safe_normalize(np.cross(forward_vector, right_vector))
    R = np.stack([right_vector, up_vector, forward_vector], axis=1)
    return R

def get_look_at_camera_pose(target, target_to_cam_offset, look_distance=0.1, opengl=True):
    """
    Calculate the pose (cam2world) matrix from target position the camera suppose to look at and offset vector from target to camera
    
    Args:
        target (NDArray[float32], shape: 3): the target position the camera suppose to look at
        target_to_cam_dir (NDArray[float32], shape: 3): offset direction from target to camera
        look_distance (float, optional): length of offset vector from target to camera.

    Returns:
        NDArray[float32]: shape: (4, 4), pose (cam2world) matrix
    """
    
    norm=np.linalg.norm(target_to_cam_offset)
    if norm==0:
        norm=np.finfo(np.float32).eps
    target_to_cam_offset = look_distance * target_to_cam_offset / norm
    
    campos = target_to_cam_offset + target  # [3]
    T = np.eye(4, dtype=np.float32)
    T[:3, :3] = look_at(campos, target, opengl)
    T[:3, 3] = campos
    return T

class OrbitCamera:
    def __init__(self, W, H, r=2, fovy=60, near=0.01, far=100):
        self.W = W
        self.H = H
        self.radius = r  # camera distance from center
        self.fovy = np.deg2rad(fovy)  # deg 2 rad
        self.near = near
        self.far = far
        self.center = np.array([0, 0, 0], dtype=np.float32)  # look at this point
        self.rot = R.from_matrix(np.eye(3))
        self.up = np.array([0, 1, 0], dtype=np.float32)  # need to be normalized!

    @property
    def fovx(self):
        return 2 * np.arctan(np.tan(self.fovy / 2) * self.W / self.H)

    @property
    def campos(self):
        return self.pose[:3, 3]

    # pose (c2w)
    @property
    def pose(self):
        # first move camera to radius
        res = np.eye(4, dtype=np.float32)
        res[2, 3] = self.radius  # opengl convention...
        # rotate
        rot = np.eye(4, dtype=np.float32)
        rot[:3, :3] = self.rot.as_matrix()
        res = rot @ res
        # translate
        res[:3, 3] -= self.center
        return res

    # view (w2c)
    @property
    def view(self):
        return np.linalg.inv(self.pose)

    # projection (perspective)
    @property
    def perspective(self):
        y = np.tan(self.fovy / 2)
        aspect = self.W / self.H
        return np.array(
            [
                [1 / (y * aspect), 0, 0, 0],
                [0, -1 / y, 0, 0],
                [
                    0,
                    0,
                    -(self.far + self.near) / (self.far - self.near),
                    -(2 * self.far * self.near) / (self.far - self.near),
                ],
                [0, 0, -1, 0],
            ],
            dtype=np.float32,
        )

    # intrinsics
    @property
    def intrinsics(self):
        focal = self.H / (2 * np.tan(self.fovy / 2))
        return np.array([focal, focal, self.W // 2, self.H // 2], dtype=np.float32)

    @property
    def mvp(self):
        return self.perspective @ np.linalg.inv(self.pose)  # [4, 4]

    def orbit(self, dx, dy):
        # rotate along camera up/side axis!
        side = self.rot.as_matrix()[:3, 0]
        rotvec_x = self.up * np.radians(-0.05 * dx)
        rotvec_y = side * np.radians(-0.05 * dy)
        self.rot = R.from_rotvec(rotvec_x) * R.from_rotvec(rotvec_y) * self.rot

    def scale(self, delta):
        self.radius *= 1.1 ** (-delta)

    def pan(self, dx, dy, dz=0):
        # pan in camera coordinate system (careful on the sensitivity!)
        self.center += 0.0005 * self.rot.as_matrix()[:3, :3] @ np.array([-dx, -dy, dz])
        
def calculate_fovX(H, W, fovy):
    return 2 * np.arctan(np.tan(fovy / 2) * W / H)
        
def get_projection_matrix(znear, zfar, fovX, fovY, z_sign=1.0):
    tanHalfFovY = math.tan((fovY / 2))
    tanHalfFovX = math.tan((fovX / 2))

    P = torch.zeros(4, 4)

    P[0, 0] = 1 / tanHalfFovX
    P[1, 1] = 1 / tanHalfFovY
    P[3, 2] = z_sign
    P[2, 2] = z_sign * zfar / (zfar - znear)
    P[2, 3] = -(zfar * znear) / (zfar - znear)
    return P


class MiniCam:
    def __init__(self, c2w, width, height, fovy, fovx, znear, zfar, projection_matrix=None):
        # c2w (pose) should be in NeRF convention.

        self.image_width = width
        self.image_height = height
        self.FoVy = fovy
        self.FoVx = fovx
        self.znear = znear
        self.zfar = zfar

        w2c = np.linalg.inv(c2w)

        # rectify...
        w2c[1:3, :3] *= -1
        w2c[:3, 3] *= -1

        self.world_view_transform = torch.tensor(w2c).transpose(0, 1).cuda()
        self.projection_matrix = (
            get_projection_matrix(
                znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy
            )
            .transpose(0, 1)
            .cuda()
        ) if projection_matrix is None else projection_matrix
        self.full_proj_transform = self.world_view_transform @ self.projection_matrix
        self.camera_center = -torch.tensor(c2w[:3, 3]).cuda()

class BaseCameraController(ABC):
    def __init__(self, renderer, cam_size_W, cam_size_H, reference_orbit_camera_fovy, invert_bg_prob=1.0, static_bg=None, device='cuda'):
        self.device = torch.device(device)
        
        self.renderer = renderer
        self.cam = OrbitCamera(cam_size_W, cam_size_H, fovy=reference_orbit_camera_fovy)
        
        self.invert_bg_prob = invert_bg_prob
        self.black_bg = torch.tensor([0, 0, 0], dtype=torch.float32, device=self.device)
        self.white_bg = torch.tensor([1, 1, 1], dtype=torch.float32, device=self.device)
        self.static_bg = None if static_bg is None else torch.tensor(static_bg, dtype=torch.float32, device=self.device)

        self.post_init()

        super().__init__()
    
    def post_init(self):
        # Calls after default initialize at the end of __init__()
        pass

    @abstractmethod
    def get_render_result(self, render_pose, bg_color, **kwargs):
        pass
        
    def render_at_pose(self, cam_pose, **kwargs):
        radius, elevation, azimuth, center_X, center_Y, center_Z = cam_pose
        
        orbit_target = np.array([center_X, center_Y, center_Z], dtype=np.float32)
        render_pose = orbit_camera(elevation, azimuth, radius, target=orbit_target)
        
        if self.static_bg is None:
            bg_color = self.white_bg if np.random.rand() > self.invert_bg_prob else self.black_bg
        else:
            bg_color = self.static_bg
            
        return self.get_render_result(render_pose, bg_color, **kwargs)
    
    def render_all_pose(self, all_cam_poses, **kwargs):
        all_rendered_images, all_rendered_masks = [], []
        extra_outputs = {}
        for cam_pose in all_cam_poses:
            out = self.render_at_pose(cam_pose, **kwargs)
            
            image = out["image"] # [3, H, W] in [0, 1]
            mask = out["alpha"] # [1, H, W] in [0, 1]
            
            all_rendered_images.append(image)
            all_rendered_masks.append(mask)
            
            for k in out:
                if k not in extra_outputs:
                    extra_outputs[k] = []
                extra_outputs[k].append(out[k])
                
        for k in extra_outputs:
            extra_outputs[k] = torch.stack(extra_outputs[k], dim=0)
            
        # [Number of Poses, 3, H, W], [Number of Poses, 1, H, W] both in [0, 1]
        return torch.stack(all_rendered_images, dim=0), torch.stack(all_rendered_masks, dim=0), extra_outputs
    
def compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center_x, orbit_center_y, orbit_center_z):
    orbit_camposes = []
    
    campose_num = len(orbit_radius)
    for i in range(campose_num):
        orbit_camposes.append([
            orbit_radius[i], 
            np.clip(orbit_elevations[i], ELEVATION_MIN, ELEVATION_MAX), 
            np.clip(orbit_azimuths[i], AZIMUTH_MIN, AZIMUTH_MAX),
            orbit_center_x[i], orbit_center_y[i], orbit_center_z[i]
        ])
        
    return orbit_camposes