File size: 6,524 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
import numpy as np
from PIL import Image
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

def prepare_torch_img(img, size_H, size_W, device="cuda", keep_shape=False):
    # [N, H, W, C] -> [N, C, H, W]
    img_new = img.permute(0, 3, 1, 2).to(device)
    img_new = F.interpolate(img_new, (size_H, size_W), mode="bilinear", align_corners=False).contiguous()
    if keep_shape:
        img_new = img_new.permute(0, 2, 3, 1)
    return img_new

def torch_imgs_to_pils(images, masks=None, alpha_min=0.1):
    """
        images (torch): [N, H, W, C] or [H, W, C]
        masks (torch): [N, H, W] or [H, W]
    """
    if len(images.shape) == 3:
        images = images.unsqueeze(0)

    if masks is not None:
        masks = masks.to(dtype=images.dtype, device=images.device)
        
        if len(masks.shape) == 2:
            masks = masks.unsqueeze(0)

        inv_mask_index = masks < alpha_min
        images[inv_mask_index] = 0.
        
        masks = masks.unsqueeze(3)
        images = torch.cat((images, masks), dim=3)
        mode="RGBA"
    else:
        mode="RGB"

    pil_image_list = [Image.fromarray((images[i].detach().cpu().numpy() * 255).astype(np.uint8), mode=mode) for i in range(images.shape[0])]

    return pil_image_list

def troch_image_dilate(img):
    """
    Remove thin seams on generated texture
        img (torch): [H, W, C]
    """
    import cv2
    img = np.asarray(img.cpu().numpy(), dtype=np.float32)
    img = img * 255
    img = img.clip(0, 255)
    mask = np.sum(img.astype(np.float32), axis=-1, keepdims=True)
    mask = (mask <= 3.0).astype(np.float32)
    kernel = np.ones((3, 3), 'uint8')
    dilate_img = cv2.dilate(img, kernel, iterations=1)
    img = img * (1 - mask) + dilate_img * mask
    img = (img.clip(0, 255) / 255).astype(np.float32)
    return torch.from_numpy(img)

def pils_to_torch_imgs(pils: Union[Image.Image, List[Image.Image]], dtype=torch.float16, device="cuda", force_rgb=True):
    if isinstance(pils, Image.Image):
        pils = [pils]
    
    images = []
    for pil in pils:
        if pil.mode == "RGBA" and force_rgb:
            pil = pil.convert('RGB')

        images.append(TF.to_tensor(pil).permute(1, 2, 0))

    images = torch.stack(images, dim=0).to(dtype=dtype, device=device)

    return images

def pils_rgba_to_rgb(pils: Union[Image.Image, List[Image.Image]], bkgd="WHITE"):
    if isinstance(pils, Image.Image):
        pils = [pils]
    
    rgbs = []
    for pil in pils:
        if pil.mode == 'RGBA':
            new_image = Image.new("RGBA", pil.size, bkgd)
            new_image.paste(pil, (0, 0), pil)
            rgbs.append(new_image.convert('RGB'))
        else:
            rgbs.append(pil)

    return rgbs

def pil_split_image(image, rows=None, cols=None):
    """
        inverse function of make_image_grid
    """
    # image is in square
    if rows is None and cols is None:
        # image.size [W, H]
        rows = 1
        cols = image.size[0] // image.size[1]
        assert cols * image.size[1] == image.size[0]
        subimg_size = image.size[1]
    elif rows is None:
        subimg_size = image.size[0] // cols
        rows = image.size[1] // subimg_size
        assert rows * subimg_size == image.size[1]
    elif cols is None:
        subimg_size = image.size[1] // rows
        cols = image.size[0] // subimg_size
        assert cols * subimg_size == image.size[0]
    else:
        subimg_size = image.size[1] // rows
        assert cols * subimg_size == image.size[0]
    subimgs = []
    for i in range(rows):
        for j in range(cols):
            subimg = image.crop((j*subimg_size, i*subimg_size, (j+1)*subimg_size, (i+1)*subimg_size))
            subimgs.append(subimg)
    return subimgs

def pil_make_image_grid(images, rows=None, cols=None):
    if rows is None and cols is None:
        rows = 1
        cols = len(images)
    if rows is None:
        rows = len(images) // cols
        if len(images) % cols != 0:
            rows += 1
    if cols is None:
        cols = len(images) // rows
        if len(images) % rows != 0:
            cols += 1
    total_imgs = rows * cols
    if total_imgs > len(images):
        images += [Image.new(images[0].mode, images[0].size) for _ in range(total_imgs - len(images))]

    w, h = images[0].size
    grid = Image.new(images[0].mode, size=(cols * w, rows * h))

    for i, img in enumerate(images):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid

def pils_erode_masks(mask_list):
    out_mask_list = []
    for idx, mask in enumerate(mask_list):
        arr = np.array(mask)
        alpha = (arr[:, :, 3] > 127).astype(np.uint8)
        # erode 1px
        import cv2
        alpha = cv2.erode(alpha, np.ones((3, 3), np.uint8), iterations=1)
        alpha = (alpha * 255).astype(np.uint8)
        out_mask_list.append(Image.fromarray(alpha[:, :, None]))

    return out_mask_list

def pils_resize_foreground(
    pils: Union[Image.Image, List[Image.Image]],
    ratio: float,
) -> List[Image.Image]:
    if isinstance(pils, Image.Image):
        pils = [pils]
        
    new_pils = []
    for image in pils:
        image = np.array(image)
        assert image.shape[-1] == 4
        alpha = np.where(image[..., 3] > 0)
        y1, y2, x1, x2 = (
            alpha[0].min(),
            alpha[0].max(),
            alpha[1].min(),
            alpha[1].max(),
        )
        # crop the foreground
        fg = image[y1:y2, x1:x2]
        # pad to square
        size = max(fg.shape[0], fg.shape[1])
        ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
        ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
        new_image = np.pad(
            fg,
            ((ph0, ph1), (pw0, pw1), (0, 0)),
            mode="constant",
            constant_values=((0, 0), (0, 0), (0, 0)),
        )

        # compute padding according to the ratio
        new_size = int(new_image.shape[0] / ratio)
        # pad to size, double side
        ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
        ph1, pw1 = new_size - size - ph0, new_size - size - pw0
        new_image = np.pad(
            new_image,
            ((ph0, ph1), (pw0, pw1), (0, 0)),
            mode="constant",
            constant_values=((0, 0), (0, 0), (0, 0)),
        )
        new_image = Image.fromarray(new_image, mode="RGBA")
        new_pils.append(new_image)
    
    return new_pils