File size: 10,169 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from torch import Tensor

import folder_paths
from comfy.model_patcher import ModelPatcher

from .control import load_controlnet, convert_to_advanced, is_advanced_controlnet, is_sd3_advanced_controlnet
from .utils import ControlWeights, LatentKeyframeGroup, TimestepKeyframeGroup, AbstractPreprocWrapper, BIGMAX

from .logger import logger


class ControlNetLoaderAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "cnet": (folder_paths.get_filename_list("controlnet"), ),
            },
            "optional": {
                "_tk_opt": ("TIMESTEP_KEYFRAME", ),
            }
        }

    RETURN_TYPES = ("CONTROL_NET", )
    FUNCTION = "load_controlnet"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"

    def load_controlnet(self, cnet,
                        _tk_opt: TimestepKeyframeGroup=None,
                        ):
        controlnet_path = folder_paths.get_full_path("controlnet", cnet)
        controlnet = load_controlnet(controlnet_path, _tk_opt)
        return (controlnet,)
    

class DiffControlNetLoaderAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "model": ("MODEL",),
                "cnet": (folder_paths.get_filename_list("controlnet"), )
            },
            "optional": {
                "_tk_opt": ("TIMESTEP_KEYFRAME", ),
            },
            "hidden": {
                "autosize": ("ACNAUTOSIZE", {"padding": 0}),
            }
        }
    
    RETURN_TYPES = ("CONTROL_NET", )
    FUNCTION = "load_controlnet"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"

    def load_controlnet(self, cnet, model,
                        _tk_opt: TimestepKeyframeGroup=None,
                        ):
        controlnet_path = folder_paths.get_full_path("controlnet", cnet)
        controlnet = load_controlnet(controlnet_path, _tk_opt, model)
        if is_advanced_controlnet(controlnet):
            controlnet.verify_all_weights()
        return (controlnet,)


class AdvancedControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "positive": ("CONDITIONING", ),
                "negative": ("CONDITIONING", ),
                "control_net": ("CONTROL_NET", ),
                "image": ("IMAGE", ),
                "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
            },
            "optional": {
                "mask_optional": ("MASK", ),
                "timestep_kf": ("TIMESTEP_KEYFRAME", ),
                "latent_kf_override": ("LATENT_KEYFRAME", ),
                "weights_override": ("CONTROL_NET_WEIGHTS", ),
                "vae_optional": ("VAE",),
            },
            "hidden": {
                "autosize": ("ACNAUTOSIZE", {"padding": 0}),
            }
        }

    RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "apply_controlnet"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"

    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent,
                         mask_optional: Tensor=None, vae_optional=None,
                         timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
                         weights_override: ControlWeights=None, control_apply_to_uncond=False):
        if strength == 0:
            return (positive, negative)

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            if conditioning is not None:
                for t in conditioning:
                    d = t[1].copy()

                    prev_cnet = d.get('control', None)
                    if prev_cnet in cnets:
                        c_net = cnets[prev_cnet]
                    else:
                        # make sure control_net is not None to avoid confusing error messages
                        if control_net is None:
                            raise Exception("Passed in control_net is None; something must have went wrong when loading it from a Load ControlNet node.")
                        # copy, convert to advanced if needed, and set cond
                        c_net = convert_to_advanced(control_net.copy()).set_cond_hint(control_hint, strength, (start_percent, end_percent), vae_optional)
                        if is_advanced_controlnet(c_net):
                            # disarm node check
                            c_net.disarm()
                            # check for allow_condhint_latents where vae_optional can't handle it itself
                            if c_net.allow_condhint_latents and not c_net.require_vae:
                                if not isinstance(control_hint, AbstractPreprocWrapper):
                                    raise Exception(f"Type '{type(c_net).__name__}' requires proc_IMAGE input via a corresponding preprocessor, but received a normal Image instead.")
                            else:
                                if isinstance(control_hint, AbstractPreprocWrapper) and not c_net.postpone_condhint_latents_check:
                                    raise Exception(f"Type '{type(c_net).__name__}' requires a normal Image input, but received a proc_IMAGE input instead.")
                            # if vae required, verify vae is passed in
                            if c_net.require_vae:
                                # if controlnet can accept preprocced condhint latents and is the case, ignore vae requirement
                                if c_net.allow_condhint_latents and isinstance(control_hint, AbstractPreprocWrapper):
                                    pass
                                elif not vae_optional:
                                    # make sure SD3 ControlNet will get a special message instead of generic type mention
                                    if is_sd3_advanced_controlnet(c_net):
                                        raise Exception(f"SD3 ControlNet requires vae_optional input, but got None.")
                                    else:
                                        raise Exception(f"Type '{type(c_net).__name__}' requires vae_optional input, but got None.")
                            # apply optional parameters and overrides, if provided
                            if timestep_kf is not None:
                                c_net.set_timestep_keyframes(timestep_kf)
                            if latent_kf_override is not None:
                                c_net.latent_keyframe_override = latent_kf_override
                            if weights_override is not None:
                                c_net.weights_override = weights_override
                            # verify weights are compatible
                            c_net.verify_all_weights()
                            # set cond hint mask
                            if mask_optional is not None:
                                mask_optional = mask_optional.clone()
                                # if not in the form of a batch, make it so
                                if len(mask_optional.shape) < 3:
                                    mask_optional = mask_optional.unsqueeze(0)
                                c_net.set_cond_hint_mask(mask_optional)
                        c_net.set_previous_controlnet(prev_cnet)
                        cnets[prev_cnet] = c_net

                    d['control'] = c_net
                    d['control_apply_to_uncond'] = control_apply_to_uncond
                    n = [t[0], d]
                    c.append(n)
            out.append(c)
        return (out[0], out[1])
    

class AdvancedControlNetApplySingle:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "conditioning": ("CONDITIONING", ),
                "control_net": ("CONTROL_NET", ),
                "image": ("IMAGE", ),
                "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
            },
            "optional": {
                "mask_optional": ("MASK", ),
                "timestep_kf": ("TIMESTEP_KEYFRAME", ),
                "latent_kf_override": ("LATENT_KEYFRAME", ),
                "weights_override": ("CONTROL_NET_WEIGHTS", ),
                "vae_optional": ("VAE",),
            },
            "hidden": {
                "autosize": ("ACNAUTOSIZE", {"padding": 0}),
            }
        }

    RETURN_TYPES = ("CONDITIONING","MODEL",)
    RETURN_NAMES = ("CONDITIONING", "model_opt")
    FUNCTION = "apply_controlnet"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"

    def apply_controlnet(self, conditioning, control_net, image, strength, start_percent, end_percent,
                         mask_optional: Tensor=None, vae_optional=None,
                         timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
                         weights_override: ControlWeights=None):
        values = AdvancedControlNetApply.apply_controlnet(self, positive=conditioning, negative=None, control_net=control_net, image=image,
                                                          strength=strength, start_percent=start_percent, end_percent=end_percent,
                                                          mask_optional=mask_optional, vae_optional=vae_optional,
                                                          timestep_kf=timestep_kf, latent_kf_override=latent_kf_override, weights_override=weights_override,
                                                          control_apply_to_uncond=True)
        return (values[0],)