File size: 10,169 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
from torch import Tensor
import folder_paths
from comfy.model_patcher import ModelPatcher
from .control import load_controlnet, convert_to_advanced, is_advanced_controlnet, is_sd3_advanced_controlnet
from .utils import ControlWeights, LatentKeyframeGroup, TimestepKeyframeGroup, AbstractPreprocWrapper, BIGMAX
from .logger import logger
class ControlNetLoaderAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"cnet": (folder_paths.get_filename_list("controlnet"), ),
},
"optional": {
"_tk_opt": ("TIMESTEP_KEYFRAME", ),
}
}
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = "Adv-ControlNet ππ
π
π
"
def load_controlnet(self, cnet,
_tk_opt: TimestepKeyframeGroup=None,
):
controlnet_path = folder_paths.get_full_path("controlnet", cnet)
controlnet = load_controlnet(controlnet_path, _tk_opt)
return (controlnet,)
class DiffControlNetLoaderAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"cnet": (folder_paths.get_filename_list("controlnet"), )
},
"optional": {
"_tk_opt": ("TIMESTEP_KEYFRAME", ),
},
"hidden": {
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = "Adv-ControlNet ππ
π
π
"
def load_controlnet(self, cnet, model,
_tk_opt: TimestepKeyframeGroup=None,
):
controlnet_path = folder_paths.get_full_path("controlnet", cnet)
controlnet = load_controlnet(controlnet_path, _tk_opt, model)
if is_advanced_controlnet(controlnet):
controlnet.verify_all_weights()
return (controlnet,)
class AdvancedControlNetApply:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
},
"optional": {
"mask_optional": ("MASK", ),
"timestep_kf": ("TIMESTEP_KEYFRAME", ),
"latent_kf_override": ("LATENT_KEYFRAME", ),
"weights_override": ("CONTROL_NET_WEIGHTS", ),
"vae_optional": ("VAE",),
},
"hidden": {
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
RETURN_NAMES = ("positive", "negative")
FUNCTION = "apply_controlnet"
CATEGORY = "Adv-ControlNet ππ
π
π
"
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent,
mask_optional: Tensor=None, vae_optional=None,
timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
weights_override: ControlWeights=None, control_apply_to_uncond=False):
if strength == 0:
return (positive, negative)
control_hint = image.movedim(-1,1)
cnets = {}
out = []
for conditioning in [positive, negative]:
c = []
if conditioning is not None:
for t in conditioning:
d = t[1].copy()
prev_cnet = d.get('control', None)
if prev_cnet in cnets:
c_net = cnets[prev_cnet]
else:
# make sure control_net is not None to avoid confusing error messages
if control_net is None:
raise Exception("Passed in control_net is None; something must have went wrong when loading it from a Load ControlNet node.")
# copy, convert to advanced if needed, and set cond
c_net = convert_to_advanced(control_net.copy()).set_cond_hint(control_hint, strength, (start_percent, end_percent), vae_optional)
if is_advanced_controlnet(c_net):
# disarm node check
c_net.disarm()
# check for allow_condhint_latents where vae_optional can't handle it itself
if c_net.allow_condhint_latents and not c_net.require_vae:
if not isinstance(control_hint, AbstractPreprocWrapper):
raise Exception(f"Type '{type(c_net).__name__}' requires proc_IMAGE input via a corresponding preprocessor, but received a normal Image instead.")
else:
if isinstance(control_hint, AbstractPreprocWrapper) and not c_net.postpone_condhint_latents_check:
raise Exception(f"Type '{type(c_net).__name__}' requires a normal Image input, but received a proc_IMAGE input instead.")
# if vae required, verify vae is passed in
if c_net.require_vae:
# if controlnet can accept preprocced condhint latents and is the case, ignore vae requirement
if c_net.allow_condhint_latents and isinstance(control_hint, AbstractPreprocWrapper):
pass
elif not vae_optional:
# make sure SD3 ControlNet will get a special message instead of generic type mention
if is_sd3_advanced_controlnet(c_net):
raise Exception(f"SD3 ControlNet requires vae_optional input, but got None.")
else:
raise Exception(f"Type '{type(c_net).__name__}' requires vae_optional input, but got None.")
# apply optional parameters and overrides, if provided
if timestep_kf is not None:
c_net.set_timestep_keyframes(timestep_kf)
if latent_kf_override is not None:
c_net.latent_keyframe_override = latent_kf_override
if weights_override is not None:
c_net.weights_override = weights_override
# verify weights are compatible
c_net.verify_all_weights()
# set cond hint mask
if mask_optional is not None:
mask_optional = mask_optional.clone()
# if not in the form of a batch, make it so
if len(mask_optional.shape) < 3:
mask_optional = mask_optional.unsqueeze(0)
c_net.set_cond_hint_mask(mask_optional)
c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net
d['control'] = c_net
d['control_apply_to_uncond'] = control_apply_to_uncond
n = [t[0], d]
c.append(n)
out.append(c)
return (out[0], out[1])
class AdvancedControlNetApplySingle:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"conditioning": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
},
"optional": {
"mask_optional": ("MASK", ),
"timestep_kf": ("TIMESTEP_KEYFRAME", ),
"latent_kf_override": ("LATENT_KEYFRAME", ),
"weights_override": ("CONTROL_NET_WEIGHTS", ),
"vae_optional": ("VAE",),
},
"hidden": {
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONDITIONING","MODEL",)
RETURN_NAMES = ("CONDITIONING", "model_opt")
FUNCTION = "apply_controlnet"
CATEGORY = "Adv-ControlNet ππ
π
π
"
def apply_controlnet(self, conditioning, control_net, image, strength, start_percent, end_percent,
mask_optional: Tensor=None, vae_optional=None,
timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
weights_override: ControlWeights=None):
values = AdvancedControlNetApply.apply_controlnet(self, positive=conditioning, negative=None, control_net=control_net, image=image,
strength=strength, start_percent=start_percent, end_percent=end_percent,
mask_optional=mask_optional, vae_optional=vae_optional,
timestep_kf=timestep_kf, latent_kf_override=latent_kf_override, weights_override=weights_override,
control_apply_to_uncond=True)
return (values[0],)
|