File size: 13,588 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Modified from https://github.com/hehao13/CameraCtrl/blob/main/cameractrl/models/pose_adaptor.py
# (whose parts were also taken from https://github.com/TencentARC/T2I-Adapter)
import torch
import torch.nn as nn
import numpy as np
from torch import Tensor
from einops import rearrange

import comfy.ops

from .context import ContextOptions, ContextFuseMethod, ContextSchedules
from .motion_module_ad import TemporalTransformerBlock, get_position_encoding_max_len
from .logger import logger


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


class CameraEntry:
    def __init__(self, entry: list[float]):
        self.entry = entry.copy()
        self.orig_pose_width = entry[5]
        self.orig_pose_height = entry[6]
        # focal length/intrinsic camera parameters
        fx, fy, cx, cy = entry[1:5]
        self.fx = fx
        self.fy = fy
        self.cx = cx
        self.cy = cy
        w2c_mat = np.array(entry[7:]).reshape(3, 4)
        w2c_mat_4x4 = np.eye(4)
        w2c_mat_4x4[:3, :] = w2c_mat
        self.w2c_mat = w2c_mat_4x4
        self.c2w_mat = np.linalg.inv(w2c_mat_4x4)
    
    def clone(self):
        return CameraEntry(entry=self.entry)


def get_parameter_dtype(parameter: torch.nn.Module):
    params = tuple(parameter.parameters())
    if len(params) > 0:
        return params[0].dtype

    buffers = tuple(parameter.buffers())
    if len(buffers) > 0:
        return buffers[0].dtype


def get_parameter_device(parameter: torch.nn.Module):
    params = tuple(parameter.parameters())
    if len(params) > 0:
        return params[0].device

    buffers = tuple(parameter.buffers())
    if len(buffers) > 0:
        return buffers[0].device


def custom_meshgrid(*args):
    # ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
    return torch.meshgrid(*args, indexing='ij')


def get_relative_pose(cam_params: list[CameraEntry]):
    abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
    abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
    cam_to_origin = 0
    target_cam_c2w = np.array([
        [1, 0, 0, 0],
        [0, 1, 0, -cam_to_origin],
        [0, 0, 1, 0],
        [0, 0, 0, 1]
    ])
    abs2rel = target_cam_c2w @ abs_w2cs[0]
    ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
    ret_poses = np.array(ret_poses, dtype=np.float32)
    return ret_poses


def ray_condition(K: Tensor, c2w: Tensor, H, W, device):
    # c2w: B, V, 4, 4
    # K: B, V, 4

    B = K.shape[0]

    j, i = custom_meshgrid(
        torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
        torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
    )
    i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5  # [B, HxW]
    j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5  # [B, HxW]

    fx, fy, cx, cy = K.chunk(4, dim=-1)  # B,V, 1

    zs = torch.ones_like(i)  # [B, HxW]
    xs = (i - cx) / fx * zs
    ys = (j - cy) / fy * zs
    zs = zs.expand_as(ys)

    directions = torch.stack((xs, ys, zs), dim=-1)  # B, V, HW, 3
    directions = directions / directions.norm(dim=-1, keepdim=True)  # B, V, HW, 3

    rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2)  # B, V, 3, HW
    rays_o = c2w[..., :3, 3]  # B, V, 3
    rays_o = rays_o[:, :, None].expand_as(rays_d)  # B, V, 3, HW
    # c2w @ directions
    rays_dxo = torch.cross(rays_o, rays_d)
    plucker = torch.cat([rays_dxo, rays_d], dim=-1)
    plucker = plucker.reshape(B, c2w.shape[1], H, W, 6)  # B, V, H, W, 6
    # plucker = plucker.permute(0, 1, 4, 2, 3)
    return plucker


def prepare_pose_embedding(cam_params: list[CameraEntry], image_width, image_height):
    # clone each CameraEntry in list so that CameraEntries don't get spoiled after a single run
    cam_params = [entry.clone() for entry in cam_params]
    sample_wh_ratio = image_width / image_height

    for cam_param in cam_params:
        pose_wh_ratio = cam_param.orig_pose_width / cam_param.orig_pose_height

        if pose_wh_ratio > sample_wh_ratio:
            resized_ori_w = image_height * pose_wh_ratio
            cam_param.fx = resized_ori_w * cam_param.fx / image_width
        else:
            resized_ori_h = image_width / pose_wh_ratio
            cam_param.fy = resized_ori_h * cam_param.fy / image_height
    intrinsic = np.asarray([[cam_param.fx * image_width,
                             cam_param.fy * image_height,
                             cam_param.cx * image_width,
                             cam_param.cy * image_height]
                            for cam_param in cam_params], dtype=np.float32)
    
    K = torch.as_tensor(intrinsic)[None]  # [1, 1, 4]
    c2ws = get_relative_pose(cam_params)
    c2ws = torch.as_tensor(c2ws)[None]  # [1, n_frame, 4, 4]
    plucker_embedding = ray_condition(K, c2ws, image_height, image_width, device='cpu')[0].permute(0, 3, 1, 2).contiguous()  # V, 6, H, W
    plucker_embedding = rearrange(plucker_embedding, "f c h w -> c f h w")
    return plucker_embedding


class CameraPoseEncoder(nn.Module):
    def __init__(self,
                 downscale_factor=8,
                 channels=[320, 640, 1280, 1280],
                 nums_rb=2,
                 cin=384,
                 ksize=1,
                 sk=True,
                 use_conv=False,
                 compression_factor=1,
                 temporal_attention_nhead=8,
                 attention_block_types=("Temporal_Self", ),
                 temporal_position_encoding=True,
                 temporal_position_encoding_max_len=16,
                 rescale_output_factor=1.0,
                 ops=comfy.ops.disable_weight_init):
        super(CameraPoseEncoder, self).__init__()
        self.unshuffle = nn.PixelUnshuffle(downscale_factor)
        self.channels = channels
        self.nums_rb = nums_rb
        self.encoder_conv_in = ops.Conv2d(cin, channels[0], 3, 1, 1)
        self.encoder_down_conv_blocks = nn.ModuleList()
        self.encoder_down_attention_blocks = nn.ModuleList()
        for i in range(len(channels)):
            conv_layers = nn.ModuleList()
            temporal_attention_layers = nn.ModuleList() 
            for j in range(nums_rb):
                if j == 0 and i != 0:
                    in_dim = channels[i - 1]
                    out_dim = int(channels[i] / compression_factor)
                    conv_layer = ResnetBlockCameraCtrl(in_dim, out_dim, down=True, ksize=ksize, sk=sk, use_conv=use_conv, ops=ops)
                elif j == 0:
                    in_dim = channels[0]
                    out_dim = int(channels[i] / compression_factor)
                    conv_layer = ResnetBlockCameraCtrl(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv, ops=ops)
                elif j == nums_rb - 1:
                    in_dim = channels[i] / compression_factor
                    out_dim = channels[i]
                    conv_layer = ResnetBlockCameraCtrl(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv, ops=ops)
                else:
                    in_dim = int(channels[i] / compression_factor)
                    out_dim = int(channels[i] / compression_factor)
                    conv_layer = ResnetBlockCameraCtrl(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv, ops=ops)
                temporal_attention_layer = TemporalTransformerBlock(dim=out_dim,
                                                                    num_attention_heads=temporal_attention_nhead,
                                                                    attention_head_dim=int(out_dim / temporal_attention_nhead),
                                                                    attention_block_types=attention_block_types,
                                                                    dropout=0.0,
                                                                    cross_attention_dim=None,
                                                                    temporal_pe=temporal_position_encoding,
                                                                    temporal_pe_max_len=temporal_position_encoding_max_len,
                                                                    ops=ops)
                conv_layers.append(conv_layer)
                temporal_attention_layers.append(temporal_attention_layer)
            self.encoder_down_conv_blocks.append(conv_layers)
            self.encoder_down_attention_blocks.append(temporal_attention_layers)
            self.temporal_pe_max_len = 16

    def forward(self, x: Tensor, video_length: int, batched_number: int=1):
        # rearrange to match expected format
        x = rearrange(x, "c f h w -> f c h w")
        # logger.info(f"x: {x.shape}, {float(x[0][0][0][-1])}")
        # unshuffle
        x = self.unshuffle(x)
        # extract features
        features = []
        # prepare view_options, if needed
        view_options = ContextOptions(
            context_length=self.temporal_pe_max_len,
            context_overlap=self.temporal_pe_max_len//2, # at 16 max_len, context_overlap will be 8
            context_schedule=ContextSchedules.STATIC_STANDARD,
            fuse_method=ContextFuseMethod.PYRAMID,
        )
        # logger.warn(f"x dtype: {x.dtype}, device: {x.device}")
        # logger.warn(f"dtype: {get_parameter_dtype(self)}, device: {get_parameter_device(self)}")
        x = self.encoder_conv_in(x.to(dtype=get_parameter_dtype(self), device=get_parameter_device(self)))
        for res_block, attention_block in zip(self.encoder_down_conv_blocks, self.encoder_down_attention_blocks):
            for res_layer, attention_layer in zip(res_block, attention_block):
                x = res_layer(x)
                h, w = x.shape[-2:]
                x = rearrange(x, 'b c h w -> b (h w) c')  # h w are in middle instead of beginning like in diffusers
                x = attention_layer(x, video_length=video_length, view_options=view_options)
                x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)  # h w are in middle instead of beginning like in diffusers
            features.append(x)
        # for idx, feature in enumerate(features):
        #     logger.info(f"{idx}: {feature.shape}, {float(feature[0][0][0][0])}")
        for idx, x1 in enumerate(features):
            x1 = x1.to(x.dtype).to(x.device)
            x1 = rearrange(x1, 'b c h w -> (h w) b c')
            x1 = torch.cat([x1] * batched_number, dim=0)
            features[idx] = x1
        return features


class ResnetBlockCameraCtrl(nn.Module):
    def __init__(self, in_c, out_c, down: bool, ksize=3, sk=False, use_conv=True,
                 ops=comfy.ops.disable_weight_init):
        super().__init__()
        ps = ksize // 2 # padding size
        if in_c != out_c or sk == False:
            self.in_conv = ops.Conv2d(in_c, out_c, ksize, 1, ps)
        else:
            self.in_conv = None
        self.block1 = ops.Conv2d(out_c, out_c, 3, 1, 1)
        self.act = nn.ReLU()
        self.block2 = ops.Conv2d(out_c, out_c, ksize, 1, ps)
        if sk == False:
            self.skep = ops.Conv2d(in_c, out_c, ksize, 1, ps)
        else:
            self.skep = None

        self.down = down
        if self.down == True:
            self.down_opt = DownsampleCameraCtrl(in_c, use_conv=use_conv)

    def forward(self, x: Tensor):
        if self.down == True:
            x = self.down_opt(x)
        if self.in_conv is not None:  # edit
            x = self.in_conv(x)

        h = self.block1(x)
        h = self.act(h)
        h = self.block2(h)
        if self.skep is not None:
            return h + self.skep(x)
        else:
            return h + x


class DownsampleCameraCtrl(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv: bool, dims=2, out_channels=None, padding=1,
                 ops=comfy.ops.disable_weight_init):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
            self.operation = ops.conv_nd(dims, in_channels=self.channels, out_channels=self.out_channels,
                                         kernel_size=3, stride=stride, padding=padding)
        else:
            assert self.channels == self.out_channels
            self.operation = avg_pool_nd(dims, kernel_size=stride, stride=stride)  # both are stride value on purpose
    
    def forward(self, x: Tensor):
        assert x.shape[1] == self.channels
        return self.operation(x)