File size: 28,854 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
from typing import Union
import torch
import torchvision
from PIL import Image, ImageFont, ImageDraw
import numpy as np
from torch import Tensor
import comfy.samplers
from comfy.model_base import BaseModel
from comfy.model_patcher import ModelPatcher
from .context_extras import ContextExtrasGroup
from .utils_motion import get_sorted_list_via_attr
class ContextFuseMethod:
FLAT = "flat"
PYRAMID = "pyramid"
RELATIVE = "relative"
RANDOM = "random"
GAUSS_SIGMA = "gauss-sigma"
GAUSS_SIGMA_INV = "gauss-sigma inverse"
DELAYED_REVERSE_SAWTOOTH = "delayed reverse sawtooth"
PYRAMID_SIGMA = "pyramid-sigma"
PYRAMID_SIGMA_INV = "pyramid-sigma inverse"
LIST = [PYRAMID, FLAT, DELAYED_REVERSE_SAWTOOTH, PYRAMID_SIGMA, PYRAMID_SIGMA_INV, GAUSS_SIGMA, GAUSS_SIGMA_INV, RANDOM]
LIST_STATIC = [PYRAMID, RELATIVE, FLAT, DELAYED_REVERSE_SAWTOOTH, PYRAMID_SIGMA, PYRAMID_SIGMA_INV, GAUSS_SIGMA, GAUSS_SIGMA_INV, RANDOM]
class ContextType:
UNIFORM_WINDOW = "uniform window"
class ContextOptions:
def __init__(self, context_length: int=None, context_stride: int=None, context_overlap: int=None,
context_schedule: str=None, closed_loop: bool=False, fuse_method: str=ContextFuseMethod.FLAT,
use_on_equal_length: bool=False, view_options: 'ContextOptions'=None,
start_percent=0.0, guarantee_steps=1):
# permanent settings
self.context_length = context_length
self.context_stride = context_stride
self.context_overlap = context_overlap
self.context_schedule = context_schedule
self.closed_loop = closed_loop
self.fuse_method = fuse_method
self.sync_context_to_pe = False # this feature is likely bad and stay unused, so I might remove this
self.use_on_equal_length = use_on_equal_length
self.view_options = view_options.clone() if view_options else view_options
# scheduling
self.start_percent = float(start_percent)
self.start_t = 999999999.9
self.guarantee_steps = guarantee_steps
# temporary vars
self._step: int = 0
@property
def step(self):
return self._step
@step.setter
def step(self, value: int):
self._step = value
if self.view_options:
self.view_options.step = value
def clone(self):
n = ContextOptions(context_length=self.context_length, context_stride=self.context_stride,
context_overlap=self.context_overlap, context_schedule=self.context_schedule,
closed_loop=self.closed_loop, fuse_method=self.fuse_method,
use_on_equal_length=self.use_on_equal_length, view_options=self.view_options,
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
n.start_t = self.start_t
return n
class ContextOptionsGroup:
def __init__(self):
self.contexts: list[ContextOptions] = []
self.extras = ContextExtrasGroup()
self._current_context: ContextOptions = None
self._current_used_steps: int = 0
self._current_index: int = 0
self._previous_t = -1
self._step = 0
def reset(self):
self._current_context = None
self._current_used_steps = 0
self._current_index = 0
self._previous_t = -1
self.step = 0
self._set_first_as_current()
self.extras.cleanup()
@property
def step(self):
return self._step
@step.setter
def step(self, value: int):
self._step = value
if self._current_context is not None:
self._current_context.step = value
@classmethod
def default(cls):
def_context = ContextOptions()
new_group = ContextOptionsGroup()
new_group.add(def_context)
return new_group
def add(self, context: ContextOptions):
# add to end of list, then sort
self.contexts.append(context)
self.contexts = get_sorted_list_via_attr(self.contexts, "start_percent")
self._set_first_as_current()
def add_to_start(self, context: ContextOptions):
# add to start of list, then sort
self.contexts.insert(0, context)
self.contexts = get_sorted_list_via_attr(self.contexts, "start_percent")
self._set_first_as_current()
def has_index(self, index: int) -> int:
return index >=0 and index < len(self.contexts)
def is_empty(self) -> bool:
return len(self.contexts) == 0
def clone(self):
cloned = ContextOptionsGroup()
cloned.extras = self.extras.clone()
for context in self.contexts:
cloned.contexts.append(context)
cloned._set_first_as_current()
return cloned
def initialize_timesteps(self, model: BaseModel):
for context in self.contexts:
context.start_t = model.model_sampling.percent_to_sigma(context.start_percent)
self.extras.initialize_timesteps(model)
def prepare_current(self, t: Tensor):
self.prepare_current_context(t)
self.extras.prepare_current(t)
def prepare_current_context(self, t: Tensor):
curr_t: float = t[0]
# if same as previous, do nothing as step already accounted for
if curr_t == self._previous_t:
return
prev_index = self._current_index
# if met guaranteed steps, look for next context in case need to switch
if self._current_used_steps >= self._current_context.guarantee_steps:
# if has next index, loop through and see if need to switch
if self.has_index(self._current_index+1):
for i in range(self._current_index+1, len(self.contexts)):
eval_c = self.contexts[i]
# check if start_t is greater or equal to curr_t
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
if eval_c.start_t >= curr_t:
self._current_index = i
self._current_context = eval_c
self._current_used_steps = 0
# if guarantee_steps greater than zero, stop searching for other keyframes
if self._current_context.guarantee_steps > 0:
break
# if eval_c is outside the percent range, stop looking further
else:
break
# update steps current context is used
self._current_used_steps += 1
# update previous_t
self._previous_t = curr_t
def _set_first_as_current(self):
if len(self.contexts) > 0:
self._current_context = self.contexts[0]
# properties shadow those of ContextOptions
@property
def context_length(self):
return self._current_context.context_length
@property
def context_overlap(self):
return self._current_context.context_overlap
@property
def context_stride(self):
return self._current_context.context_stride
@property
def context_schedule(self):
return self._current_context.context_schedule
@property
def closed_loop(self):
return self._current_context.closed_loop
@property
def fuse_method(self):
return self._current_context.fuse_method
@property
def use_on_equal_length(self):
return self._current_context.use_on_equal_length
@property
def view_options(self):
return self._current_context.view_options
class ContextSchedules:
UNIFORM_LOOPED = "looped_uniform"
UNIFORM_STANDARD = "standard_uniform"
STATIC_STANDARD = "standard_static"
BATCHED = "batched"
VIEW_AS_CONTEXT = "view_as_context"
SVD_EXTENSION = "svd_extension"
LEGACY_UNIFORM_LOOPED = "uniform"
LEGACY_UNIFORM_SCHEDULE_LIST = [LEGACY_UNIFORM_LOOPED]
# from https://github.com/neggles/animatediff-cli/blob/main/src/animatediff/pipelines/context.py
def create_windows_uniform_looped(num_frames: int, opts: Union[ContextOptionsGroup, ContextOptions]):
windows = []
if num_frames < opts.context_length:
windows.append(list(range(num_frames)))
return windows
context_stride = min(opts.context_stride, int(np.ceil(np.log2(num_frames / opts.context_length))) + 1)
# obtain uniform windows as normal, looping and all
for context_step in 1 << np.arange(context_stride):
pad = int(round(num_frames * ordered_halving(opts.step)))
for j in range(
int(ordered_halving(opts.step) * context_step) + pad,
num_frames + pad + (0 if opts.closed_loop else -opts.context_overlap),
(opts.context_length * context_step - opts.context_overlap),
):
windows.append([e % num_frames for e in range(j, j + opts.context_length * context_step, context_step)])
return windows
def create_windows_uniform_standard(num_frames: int, opts: Union[ContextOptionsGroup, ContextOptions]):
# unlike looped, uniform_straight does NOT allow windows that loop back to the beginning;
# instead, they get shifted to the corresponding end of the frames.
# in the case that a window (shifted or not) is identical to the previous one, it gets skipped.
windows = []
if num_frames <= opts.context_length:
windows.append(list(range(num_frames)))
return windows
context_stride = min(opts.context_stride, int(np.ceil(np.log2(num_frames / opts.context_length))) + 1)
# first, obtain uniform windows as normal, looping and all
for context_step in 1 << np.arange(context_stride):
pad = int(round(num_frames * ordered_halving(opts.step)))
for j in range(
int(ordered_halving(opts.step) * context_step) + pad,
num_frames + pad + (-opts.context_overlap),
(opts.context_length * context_step - opts.context_overlap),
):
windows.append([e % num_frames for e in range(j, j + opts.context_length * context_step, context_step)])
# now that windows are created, shift any windows that loop, and delete duplicate windows
delete_idxs = []
win_i = 0
while win_i < len(windows):
# if window is rolls over itself, need to shift it
is_roll, roll_idx = does_window_roll_over(windows[win_i], num_frames)
if is_roll:
roll_val = windows[win_i][roll_idx] # roll_val might not be 0 for windows of higher strides
shift_window_to_end(windows[win_i], num_frames=num_frames)
# check if next window (cyclical) is missing roll_val
if roll_val not in windows[(win_i+1) % len(windows)]:
# need to insert new window here - just insert window starting at roll_val
windows.insert(win_i+1, list(range(roll_val, roll_val + opts.context_length)))
# delete window if it's not unique
for pre_i in range(0, win_i):
if windows[win_i] == windows[pre_i]:
delete_idxs.append(win_i)
break
win_i += 1
# reverse delete_idxs so that they will be deleted in an order that doesn't break idx correlation
delete_idxs.reverse()
for i in delete_idxs:
windows.pop(i)
return windows
def create_windows_static_standard(num_frames: int, opts: Union[ContextOptionsGroup, ContextOptions]):
windows = []
if num_frames <= opts.context_length:
windows.append(list(range(num_frames)))
return windows
# always return the same set of windows
delta = opts.context_length - opts.context_overlap
for start_idx in range(0, num_frames, delta):
# if past the end of frames, move start_idx back to allow same context_length
ending = start_idx + opts.context_length
if ending >= num_frames:
final_delta = ending - num_frames
final_start_idx = start_idx - final_delta
windows.append(list(range(final_start_idx, final_start_idx + opts.context_length)))
break
windows.append(list(range(start_idx, start_idx + opts.context_length)))
return windows
def create_windows_batched(num_frames: int, opts: Union[ContextOptionsGroup, ContextOptions]):
windows = []
if num_frames <= opts.context_length:
windows.append(list(range(num_frames)))
return windows
# always return the same set of windows;
# no overlap, just cut up based on context_length;
# last window size will be different if num_frames % opts.context_length != 0
for start_idx in range(0, num_frames, opts.context_length):
windows.append(list(range(start_idx, min(start_idx + opts.context_length, num_frames))))
return windows
def create_windows_default(num_frames: int, opts: Union[ContextOptionsGroup, ContextOptions]):
return [list(range(num_frames))]
def get_context_windows(num_frames: int, opts: Union[ContextOptionsGroup, ContextOptions]):
context_func = CONTEXT_MAPPING.get(opts.context_schedule, None)
if not context_func:
raise ValueError(f"Unknown context_schedule '{opts.context_schedule}'.")
return context_func(num_frames, opts)
CONTEXT_MAPPING = {
ContextSchedules.UNIFORM_LOOPED: create_windows_uniform_looped,
ContextSchedules.UNIFORM_STANDARD: create_windows_uniform_standard,
ContextSchedules.STATIC_STANDARD: create_windows_static_standard,
ContextSchedules.BATCHED: create_windows_batched,
ContextSchedules.SVD_EXTENSION: create_windows_batched,
ContextSchedules.VIEW_AS_CONTEXT: create_windows_default, # just return all to allow Views to do all the work
}
def get_context_weights(num_frames: int, fuse_method: str, sigma: Tensor = None):
weights_func = FUSE_MAPPING.get(fuse_method, None)
if not weights_func:
raise ValueError(f"Unknown fuse_method '{fuse_method}'.")
return weights_func(num_frames, sigma=sigma )
def create_weights_flat(length: int, **kwargs) -> list[float]:
# weight is the same for all
return [1.0] * length
def create_weights_pyramid(length: int, **kwargs) -> list[float]:
# weight is based on the distance away from the edge of the context window;
# based on weighted average concept in FreeNoise paper
if length % 2 == 0:
max_weight = length // 2
weight_sequence = list(range(1, max_weight + 1, 1)) + list(range(max_weight, 0, -1))
else:
max_weight = (length + 1) // 2
weight_sequence = list(range(1, max_weight, 1)) + [max_weight] + list(range(max_weight - 1, 0, -1))
return weight_sequence
def create_weights_random(length: int, **kwargs) -> list[float]:
if length % 2 == 0:
max_weight = length // 2
else:
max_weight = (length + 1) // 2
return list(np.random.random(length)*max_weight+0.001)
def create_weights_gauss_sigma(length: int, **kwargs) -> list[float]:
sigma = 1.0 + 8.0*(min(4.0, kwargs["sigma"].mean().cpu()) / 4.0)
ax = np.linspace(-(length - 1) / 2., (length - 1) / 2., length)
w = np.exp(-0.5 * np.square(ax) / np.square(sigma))
if length % 2 == 0:
max_weight = length // 2
else:
max_weight = (length + 1) // 2
w *= max_weight / np.linalg.norm(w)
#print("create_weights_gauss_sigma sigma",sigma,w)
return list(w)
def create_weights_gauss_sigma_inv(length: int, **kwargs) -> list[float]:
sigma = 1.0 + 8.0*(1.0-min(4.0, kwargs["sigma"].mean().cpu()) / 4.0)
ax = np.linspace(-(length - 1) / 2., (length - 1) / 2., length)
w = np.exp(-0.5 * np.square(ax) / np.square(sigma))
if length % 2 == 0:
max_weight = length // 2
else:
max_weight = (length + 1) // 2
w *= max_weight / np.linalg.norm(w)
#print("create_weights_gauss_sigma_inv sigma",sigma,w)
return list(w)
def create_weights_pyramid_sigma_inv(length: int, **kwargs) -> list[float]:
sigma = min(4.0, kwargs["sigma"].mean().cpu()) / 4.0
if length % 2 == 0:
max_weight = length // 2
weight_sequence = np.array(list(range(1, max_weight + 1, 1)) + list(range(max_weight, 0, -1)))
weight_sequence2 = np.array([-max_weight]*(max_weight-1) +[max_weight,max_weight] + [-max_weight]*(max_weight-1))
else:
max_weight = (length + 1) // 2
weight_sequence = list(range(1, max_weight, 1)) + [max_weight] + list(range(max_weight - 1, 0, -1))
weight_sequence2 = np.array([-max_weight]*(max_weight) +[max_weight] + [-max_weight]*(max_weight-1))
weight_sequence = (sigma * weight_sequence2 + (1.0-sigma) * weight_sequence).clip(0.001,max_weight)
#print("create_weights_pyramid_sigma_inv",kwargs["sigma"].mean(),sigma, len(weight_sequence),weight_sequence)
return list(weight_sequence)
def create_weights_pyramid_sigma(length: int, **kwargs) -> list[float]:
sigma = min(4.0, kwargs["sigma"].mean().cpu()) / 4.0
if length % 2 == 0:
max_weight = length // 2
weight_sequence = np.array(list(range(1, max_weight + 1, 1)) + list(range(max_weight, 0, -1)))
weight_sequence2 = np.array([-max_weight]*(max_weight-1) +[max_weight,max_weight] + [-max_weight]*(max_weight-1))
else:
max_weight = (length + 1) // 2
weight_sequence = list(range(1, max_weight, 1)) + [max_weight] + list(range(max_weight - 1, 0, -1))
weight_sequence2 = np.array([-max_weight]*(max_weight) +[max_weight] + [-max_weight]*(max_weight-1))
weight_sequence = (sigma * weight_sequence + (1.0-sigma) * weight_sequence2).clip(0.001,max_weight)
#print("create_weights_pyramid_sigma",kwargs["sigma"].mean(),sigma, len(weight_sequence),weight_sequence)
return list(weight_sequence)
def create_weights_delayed_reverse_sawtooth(length: int, **kwargs) -> list[float]:
# assigns 0.01 to first half (or half-1 if even) of weights, then the rest of the weights are basically
# based on distance from context edge
if length % 2 == 0:
max_weight = length // 2
weight_sequence = [0.01]*(max_weight-1) + [max_weight] + list(range(max_weight, 0, -1))
else:
max_weight = (length + 1) // 2
weight_sequence = [0.01]*max_weight + [max_weight] + list(range(max_weight - 1, 0, -1))
#print("create_weights_delayed_falling_edge",len(weight_sequence),weight_sequence)
return weight_sequence
FUSE_MAPPING = {
ContextFuseMethod.FLAT: create_weights_flat,
ContextFuseMethod.PYRAMID: create_weights_pyramid,
ContextFuseMethod.RELATIVE: create_weights_pyramid,
ContextFuseMethod.GAUSS_SIGMA: create_weights_gauss_sigma,
ContextFuseMethod.GAUSS_SIGMA_INV: create_weights_gauss_sigma_inv,
ContextFuseMethod.RANDOM: create_weights_random,
ContextFuseMethod.DELAYED_REVERSE_SAWTOOTH: create_weights_delayed_reverse_sawtooth,
ContextFuseMethod.PYRAMID_SIGMA: create_weights_pyramid_sigma,
ContextFuseMethod.PYRAMID_SIGMA_INV: create_weights_pyramid_sigma_inv,
}
# Returns fraction that has denominator that is a power of 2
def ordered_halving(val):
# get binary value, padded with 0s for 64 bits
bin_str = f"{val:064b}"
# flip binary value, padding included
bin_flip = bin_str[::-1]
# convert binary to int
as_int = int(bin_flip, 2)
# divide by 1 << 64, equivalent to 2**64, or 18446744073709551616,
# or b10000000000000000000000000000000000000000000000000000000000000000 (1 with 64 zero's)
return as_int / (1 << 64)
def get_missing_indexes(windows: list[list[int]], num_frames: int) -> list[int]:
all_indexes = list(range(num_frames))
for w in windows:
for val in w:
try:
all_indexes.remove(val)
except ValueError:
pass
return all_indexes
def does_window_roll_over(window: list[int], num_frames: int) -> tuple[bool, int]:
prev_val = -1
for i, val in enumerate(window):
val = val % num_frames
if val < prev_val:
return True, i
prev_val = val
return False, -1
def shift_window_to_start(window: list[int], num_frames: int):
start_val = window[0]
for i in range(len(window)):
# 1) subtract each element by start_val to move vals relative to the start of all frames
# 2) add num_frames and take modulus to get adjusted vals
window[i] = ((window[i] - start_val) + num_frames) % num_frames
def shift_window_to_end(window: list[int], num_frames: int):
# 1) shift window to start
shift_window_to_start(window, num_frames)
end_val = window[-1]
end_delta = num_frames - end_val - 1
for i in range(len(window)):
# 2) add end_delta to each val to slide windows to end
window[i] = window[i] + end_delta
##########################
# Context Visualization
##########################
class Colors:
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)
YELLOW = (255, 255, 0)
MAGENTA = (255, 0, 255)
CYAN = (0, 255, 255)
class BorderWidth:
INDEXES = 2
CONTEXT = 4
class VisualizeSettings:
def __init__(self, img_width: int, video_length: int):
self.video_length = video_length
self.img_width = img_width
self.grid = img_width // video_length
self.img_height = self.grid * 5
self.pil_to_tensor = torchvision.transforms.Compose([torchvision.transforms.PILToTensor()])
self.font_size = int(self.grid * 0.5)
self.font = ImageFont.load_default(size=self.font_size)
#self.title_font = ImageFont.load_default(size=int(self.font_size * 1.5))
self.title_font = ImageFont.load_default(size=int(self.font_size * 1.2))
self.background_color = Colors.BLACK
self.grid_outline_color = Colors.WHITE
self.start_idx_fill_color = Colors.MAGENTA
self.subidx_end_color = Colors.YELLOW
self.context_color = Colors.GREEN
self.view_color = Colors.RED
class GridDisplay:
def __init__(self, draw: ImageDraw.ImageDraw, vs: VisualizeSettings, home_x: int=0, home_y: int=0):
self.home_x = home_x
self.home_y = home_y
self.draw = draw
self.vs = vs
def get_text_xy(input: str, font: ImageFont, x: int, y: int, centered=True):
return (x, y,)
def draw_text(text: str, font: ImageFont, gd: GridDisplay, x: int, y: int, color=Colors.WHITE, centered=True):
x, y = get_text_xy(text, font, x, y, centered=centered)
gd.draw.text(xy=(gd.home_x+x, gd.home_y+y), text=text, fill=color, font=font)
def draw_first_grid_row(total_length: int, gd: GridDisplay, start_idx=-1):
vs = gd.vs
# the first row is white squares, with the indexes drawed in
for i in range(total_length):
x1 = gd.home_x+(vs.grid*i)
y1 = gd.home_y
x2 = x1 + vs.grid
y2 = y1 + vs.grid
fill = None
if i==start_idx:
fill=vs.start_idx_fill_color
gd.draw.rectangle(xy=(x1, y1, x2, y2), fill=fill, outline=vs.grid_outline_color, width=BorderWidth.INDEXES)
draw_text(text=str(i), font=vs.font, gd=gd, x=vs.grid*i, y=0)
def draw_subidxs(window: list[int], gd: GridDisplay, y_grid_offset: int, color: tuple):
vs = gd.vs
# with no indexes drawed in- just solid squares, mostly
y_offset = vs.grid * y_grid_offset
for i, val in enumerate(window):
x1 = gd.home_x+(vs.grid*val)
y1 = gd.home_y+y_offset
x2 = x1 + vs.grid
y2 = y1 + vs.grid
fill_color = color
# if at an end of indexes, make inside be different color
if i == 0 or i == len(window)-1:
fill_color = vs.subidx_end_color
gd.draw.rectangle(xy=(x1, y1, x2, y2), fill=fill_color, outline=color, width=BorderWidth.CONTEXT)
def draw_context(window: list[int], gd: GridDisplay):
draw_subidxs(window=window, gd=gd, y_grid_offset=1, color=gd.vs.context_color)
def draw_view(window: list[int], gd: GridDisplay):
draw_subidxs(window=window, gd=gd, y_grid_offset=2, color=gd.vs.view_color)
def generate_context_visualization(model: ModelPatcher, context_opts: ContextOptionsGroup=None, sampler_name: str=None, scheduler: str=None,
width=1440, height=200, video_length=32,
steps=None, start_step=None, end_step=None, sigmas=None, force_full_denoise=False, denoise=None):
if context_opts is None:
context_opts = ContextOptionsGroup.default()
params = model.get_attachment("ADE_params")
if params is not None:
context_opts = params.context_options
context_opts = context_opts.clone()
vs = VisualizeSettings(width, video_length)
all_imgs = []
if sigmas is None:
sampler = comfy.samplers.KSampler(
model=model, steps=steps, device="cpu", sampler=sampler_name, scheduler=scheduler,
denoise=denoise, model_options=model.model_options,
)
sigmas = sampler.sigmas
if end_step is not None and end_step < (len(sigmas) - 1):
sigmas = sigmas[:end_step + 1]
if force_full_denoise:
sigmas[-1] = 0
if start_step is not None:
if start_step < (len(sigmas) - 1):
sigmas = sigmas[start_step:]
# remove last sigma, as sampling uses pairs of sigmas at a time (fence post problem)
sigmas = sigmas[:-1]
context_opts.reset()
context_opts.initialize_timesteps(model.model)
if start_step is None:
start_step = 0 # use this in case start_step is provided, to display accurate step
if steps is None:
steps = len(sigmas)
for i, t in enumerate(sigmas):
# make context_opts reflect current step/sigma
context_opts.prepare_current([t])
context_opts.step = start_step+i
# check if context should even be active in this case
context_active = True
if context_opts.context_length is None:
context_active = False
elif video_length < context_opts.context_length:
context_active = False
elif video_length == context_opts.context_length and not context_opts.use_on_equal_length:
context_active = False
if context_active:
context_windows = get_context_windows(num_frames=video_length, opts=context_opts)
else:
context_windows = [list(range(video_length))]
start_idx = -1
for j,window in enumerate(context_windows):
repeat_count = 0
view_windows = []
total_repeats = 1
view_options = context_opts.view_options
if view_options is not None:
view_active = True
if len(window) < view_options.context_length:
view_active = False
elif video_length == view_options.context_length and not view_options.use_on_equal_length:
view_active = False
if view_active:
view_windows = get_context_windows(num_frames=len(window), opts=view_options)
total_repeats = len(view_windows)
while total_repeats > repeat_count:
# create new frame
frame: Image = Image.new(mode="RGB", size=(vs.img_width, vs.img_height), color=vs.background_color)
draw = ImageDraw.Draw(frame)
gd = GridDisplay(draw=draw, vs=vs, home_x=0, home_y=vs.grid)
# if views present, do view stuff
if len(view_windows) > 0:
converted_view = [window[x] for x in view_windows[repeat_count]]
draw_view(window=converted_view, gd=gd)
# draw context_type + current step
title_str = f"{context_opts.context_schedule} - Step {context_opts.step+1}/{steps} (Context {j+1}/{len(context_windows)})"
if len(view_windows) > 0:
title_str = f"{title_str} (View {repeat_count+1}/{len(view_windows)})"
draw_text(text=title_str, font=vs.title_font, gd=gd, x=0-gd.home_x, y=0-gd.home_y, centered=False)
# draw first row (total length, white)
if j == 0:
start_idx = window[0]
draw_first_grid_row(total_length=video_length, gd=gd, start_idx=start_idx)
# draw context row
draw_context(window=window, gd=gd)
# save image + iterate repeat_count
img: Tensor = vs.pil_to_tensor(frame)
all_imgs.append(img)
repeat_count += 1
images = torch.stack(all_imgs)
images = images.movedim(1, -1).to(torch.float32)
return images
|