File size: 17,957 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
from typing import Union
import math
import torch
from torch import Tensor

from comfy.model_base import BaseModel

from .utils_motion import (prepare_mask_batch, extend_to_batch_size, get_combined_multival, resize_multival,
                           get_sorted_list_via_attr)


CONTEXTREF_VERSION = 1


class ContextExtra:
    def __init__(self, start_percent: float, end_percent: float):
        # scheduling
        self.start_percent = float(start_percent)
        self.start_t = 999999999.9
        self.end_percent = float(end_percent)
        self.end_t = 0.0
        self.curr_t = 999999999.9

    def initialize_timesteps(self, model: BaseModel):
        self.start_t = model.model_sampling.percent_to_sigma(self.start_percent)
        self.end_t = model.model_sampling.percent_to_sigma(self.end_percent)

    def prepare_current(self, t: Tensor):
        self.curr_t = t[0]

    def should_run(self):
        if self.curr_t > self.start_t or self.curr_t < self.end_t:
            return False
        return True

    def cleanup(self):
        pass


################################
# ContextRef
class ContextRefTune:
    def __init__(self,
                 attn_style_fidelity=0.0, attn_ref_weight=0.0, attn_strength=0.0,
                 adain_style_fidelity=0.0, adain_ref_weight=0.0, adain_strength=0.0):
        # attn1
        self.attn_style_fidelity = float(attn_style_fidelity)
        self.attn_ref_weight = float(attn_ref_weight)
        self.attn_strength = float(attn_strength)
        # adain
        self.adain_style_fidelity = float(adain_style_fidelity)
        self.adain_ref_weight = float(adain_ref_weight)
        self.adain_strength = float(adain_strength)
    
    def create_dict(self):
        return {
            "attn_style_fidelity": self.attn_style_fidelity,
            "attn_ref_weight": self.attn_ref_weight,
            "attn_strength": self.attn_strength,
            "adain_style_fidelity": self.adain_style_fidelity,
            "adain_ref_weight": self.adain_ref_weight,
            "adain_strength": self.adain_strength,
        }


class ContextRefMode:
    FIRST = "first"
    SLIDING = "sliding"
    INDEXES = "indexes"
    _LIST = [FIRST, SLIDING, INDEXES]

    def __init__(self, mode: str, sliding_width=2, indexes: set[int]=set([0])):
        self.mode = mode
        self.sliding_width = sliding_width
        self.indexes = indexes
        self.single_trigger = True

    @classmethod
    def init_first(cls):
        return ContextRefMode(cls.FIRST)
    
    @classmethod
    def init_sliding(cls, sliding_width: int):
        return ContextRefMode(cls.SLIDING, sliding_width=sliding_width)
    
    @classmethod
    def init_indexes(cls, indexes: set[int]):
        return ContextRefMode(cls.INDEXES, indexes=indexes)


class ContextRefKeyframe:
    def __init__(self, mult=1.0, mult_multival: Union[float, Tensor]=None, tune_replace: ContextRefTune=None, mode_replace: ContextRefMode=None,
                 start_percent=0.0, guarantee_steps=1, inherit_missing=True):
        self.mult = mult
        self.orig_mult_multival = mult_multival
        self.orig_tune_replace = tune_replace
        self.orig_mode_replace = mode_replace
        self.mult_multival = self.orig_mult_multival
        self.tune_replace = self.orig_tune_replace
        self.mode_replace = self.orig_mode_replace
        # scheduling
        self.start_percent = float(start_percent)
        self.guarantee_steps = guarantee_steps
        self.inherit_missing = inherit_missing

    def clone(self):
        c = ContextRefKeyframe(mult=self.mult, mult_multival=self.orig_mult_multival, tune_replace=self.orig_tune_replace, mode_replace=self.orig_mode_replace,
                               start_percent=self.start_percent, guarantee_steps=self.guarantee_steps, inherit_missing=self.inherit_missing)
        return c


class ContextRefKeyframeGroup:
    def __init__(self):
        self.keyframes: list[ContextRefKeyframe] = []
        self._current_keyframe: NaiveReuseKeyframe = None
        self._current_used_steps: int = 0
        self._current_index: int = 0
        self._previous_t = -1
    
    def reset(self):
        self._current_keyframe = None
        self._current_used_steps = 0
        self._current_index = 0
        self._set_first_as_current()

    def add(self, keyframe: ContextRefKeyframe):
        # add to end of list, then sort
        self.keyframes.append(keyframe)
        self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
        self._set_first_as_current()
        self._prepare_all_keyframe_vals()

    def _set_first_as_current(self):
        if len(self.keyframes) > 0:
            self._current_keyframe = self.keyframes[0]
        else:
            self._current_keyframe = None
    
    def _prepare_all_keyframe_vals(self):
        if self.is_empty():
            return
        multival = None
        tune = None
        mode = None
        for kf in self.keyframes:
            # if shouldn't inherit, clear cache
            if not kf.inherit_missing:
                multival = None
                tune = None
                mode = None
            # assign cached values, if origs were None
            # Mult #################
            if kf.orig_mult_multival is None:
                kf.mult_multival = multival
            else:
                kf.mult_multival = kf.orig_mult_multival
            # Tune #################
            if kf.orig_tune_replace is None:
                kf.tune_replace = tune
            else:
                kf.tune_replace = kf.orig_tune_replace
            # Mode #################
            if kf.orig_mode_replace is None:
                kf.mode_replace = mode
            else:
                kf.mode_replace = kf.orig_mode_replace
            # save new caches, in case next keyframe inherits missing
            if kf.mult_multival is not None:
                multival = kf.mult_multival
            if kf.tune_replace is not None:
                tune = kf.tune_replace
            if kf.mode_replace is not None:
                mode = kf.mode_replace

    def has_index(self, index: int) -> int:
        return index >=0 and index < len(self.keyframes)

    def is_empty(self) -> bool:
        return len(self.keyframes) == 0
    
    def clone(self):
        cloned = ContextRefKeyframeGroup()
        for keyframe in self.keyframes:
            cloned.keyframes.append(keyframe.clone())
        cloned._set_first_as_current()
        cloned._prepare_all_keyframe_vals()
        return cloned
    
    def create_list_of_dicts(self):
        # for each keyframe, create a dict representing values relevant to TimestepKeyframe creation in ACN
        c = []
        for kf in self.keyframes:
            d = {}
            # scheduling
            d["start_percent"] = kf.start_percent
            d["guarantee_steps"] = kf.guarantee_steps
            d["inherit_missing"] = kf.inherit_missing
            # values
            if type(kf.mult_multival) == Tensor:
                d["strength"] = kf.mult
                d["mask"] = kf.mult_multival
            else:
                if kf.mult_multival is None:
                    d["strength"] = kf.mult
                else:
                    d["strength"] = kf.mult * kf.mult_multival
                d["mask"] = None
            d["tune"] = kf.tune_replace
            d["mode"] = kf.mode_replace
            # add to list
            c.append(d)
        return c


class ContextRef(ContextExtra):
    def __init__(self, start_percent: float, end_percent: float,
                 strength_multival: Union[float, Tensor], tune: ContextRefTune, mode: ContextRefMode,
                 keyframe: ContextRefKeyframeGroup=None):
        super().__init__(start_percent=start_percent, end_percent=end_percent)
        self.tune = tune
        self.mode = mode
        self.keyframe = keyframe if keyframe else ContextRefKeyframeGroup()
        self.version = CONTEXTREF_VERSION
        # stuff for ACN usage
        self.strength = 1.0
        self.mask = None
        self._strength_multival = strength_multival
        self.strength_multival = strength_multival

    @property
    def strength_multival(self):
        return self.strength_multival
    @strength_multival.setter
    def strength_multival(self, value):
        if value is None:
            value = 1.0
        if type(value) == Tensor:
            self.strength = 1.0
            self.mask = value
        else:
            self.strength = value
            self.mask = None
        self._strength_multival = value

    def should_run(self):
        return super().should_run()
#--------------------------------


################################
# NaiveReuse 
class NaiveReuseKeyframe:
    def __init__(self, mult=1.0, mult_multival: Union[float, Tensor]=None, start_percent=0.0, guarantee_steps=1, inherit_missing=True):
        self.mult = mult
        self.orig_mult_multival = mult_multival
        self.mult_multival = mult_multival
        # scheduling
        self.start_percent = float(start_percent)
        self.start_t = 999999999.9
        self.guarantee_steps = guarantee_steps
        self.inherit_missing = inherit_missing
    
    def clone(self):
        c = NaiveReuseKeyframe(mult=self.mult, mult_multival=self.mult_multival,
                               start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
        c.start_t = self.start_t
        return c


class NaiveReuseKeyframeGroup:
    def __init__(self):
        self.keyframes: list[NaiveReuseKeyframe] = []
        self._current_keyframe: NaiveReuseKeyframe = None
        self._current_used_steps: int = 0
        self._current_index: int = 0
        self._previous_t = -1

    def reset(self):
        self._current_keyframe = None
        self._current_used_steps = 0
        self._current_index = 0
        self._set_first_as_current()

    def add(self, keyframe: NaiveReuseKeyframe):
        # add to end of list, then sort
        self.keyframes.append(keyframe)
        self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
        self._set_first_as_current()
        self._prepare_all_keyframe_vals()

    def _set_first_as_current(self):
        if len(self.keyframes) > 0:
            self._current_keyframe = self.keyframes[0]
        else:
            self._current_keyframe = None

    def _prepare_all_keyframe_vals(self):
        if self.is_empty():
            return
        multival = None
        for kf in self.keyframes:
            # if shouldn't inherit, clear cache
            if not kf.inherit_missing:
                multival = None
            # assign cached values, if origs were None
            # Mult #################
            if kf.orig_mult_multival is None:
                kf.mult_multival = multival
            else:
                kf.mult_multival = kf.orig_mult_multival
            # save new caches, in case next keyframe inherits missing
            if kf.mult_multival is not None:
                multival = kf.mult_multival

    def has_index(self, index: int) -> int:
        return index >=0 and index < len(self.keyframes)

    def is_empty(self) -> bool:
        return len(self.keyframes) == 0
    
    def clone(self):
        cloned = NaiveReuseKeyframeGroup()
        for keyframe in self.keyframes:
            cloned.keyframes.append(keyframe)
        cloned._set_first_as_current()
        cloned._prepare_all_keyframe_vals()
        return cloned
    
    def initialize_timesteps(self, model: BaseModel):
        for keyframe in self.keyframes:
            keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
    
    def prepare_current_keyframe(self, t: Tensor):
        if self.is_empty():
            return
        curr_t: float = t[0]
        # if curr_t same as before, do nothing as step already accounted for
        if curr_t == self._previous_t:
            return
        prev_index = self._current_index
        # if met guaranteed steps, look for next keyframe in case need to switch
        if self._current_used_steps >= self._current_keyframe.guarantee_steps:
            # if has next index, loop through and see if need t oswitch
            if self.has_index(self._current_index+1):
                for i in range(self._current_index+1, len(self.keyframes)):
                    eval_c = self.keyframes[i]
                    # check if start_t is greater or equal to curr_t
                    # NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
                    if eval_c.start_t >= curr_t:
                        self._current_index = i
                        self._current_keyframe = eval_c
                        self._current_used_steps = 0
                        # if guarantee_steps greater than zero, stop searching for other keyframes
                        if self._current_keyframe.guarantee_steps > 0:
                            break
                    # if eval_c is outside the percent range, stop looking further
                    else: break
        # update steps current context is used
        self._current_used_steps += 1
        # update previous_t
        self._previous_t = curr_t
    
    # properties shadow those of NaiveReuseKeyframe
    @property
    def mult(self):
        if self._current_keyframe != None:
            return self._current_keyframe.mult
        return 1.0

    @property
    def mult_multival(self):
        if self._current_keyframe != None:
            return self._current_keyframe.mult_multival
        return None


class NaiveReuse(ContextExtra):
    def __init__(self, start_percent: float, end_percent: float, weighted_mean: float, multival_opt: Union[float, Tensor]=None, naivereuse_kf: NaiveReuseKeyframeGroup=None):
        super().__init__(start_percent=start_percent, end_percent=end_percent)
        self.weighted_mean = weighted_mean
        self.orig_multival = multival_opt
        self.mask: Tensor = None
        self.keyframe = naivereuse_kf if naivereuse_kf else NaiveReuseKeyframeGroup()
        self._prev_keyframe = None
    
    def cleanup(self):
        super().cleanup()
        del self.mask
        self.mask = None
        self._prev_keyframe = None
        self.keyframe.reset()

    def initialize_timesteps(self, model: BaseModel):
        super().initialize_timesteps(model)
        self.keyframe.initialize_timesteps(model)

    def prepare_current(self, t: Tensor):
        super().prepare_current(t)
        self.keyframe.prepare_current_keyframe(t)

    def get_effective_weighted_mean(self, x: Tensor, idxs: list[int]):
        if self.orig_multival is None and self.keyframe.mult_multival is None:
            return self.weighted_mean * self.keyframe.mult
        # check if keyframe changed
        keyframe_changed = False
        if self.keyframe._current_keyframe != self._prev_keyframe:
            keyframe_changed = True
        self._prev_keyframe = self.keyframe._current_keyframe

        if type(self.orig_multival) != Tensor and type(self.keyframe.mult_multival) != Tensor:
            return self.weighted_mean * self.keyframe.mult * get_combined_multival(self.orig_multival, self.keyframe.mult_multival)

        if self.mask is None or keyframe_changed or self.mask.shape[0] != x.shape[0] or self.mask.shape[-1] != x.shape[-1] or self.mask.shape[-2] != x.shape[-2]:
            del self.mask
            real_mult_multival = resize_multival(self.keyframe.mult_multival, batch_size=x.shape[0], height=x.shape[-1], width=x.shape[-2])
            self.mask = resize_multival(self.orig_multival, batch_size=x.shape[0], height=x.shape[-1], width=x.shape[-2])
            self.mask = get_combined_multival(self.mask, real_mult_multival)
        return self.weighted_mean * self.keyframe.mult * self.mask[idxs].to(dtype=x.dtype, device=x.device)

    def should_run(self):
        to_return = super().should_run()
        # if keyframe has 0.0 val, should not run
        if self.keyframe.mult_multival is not None and type(self.keyframe.mult_multival) != Tensor and math.isclose(self.keyframe.mult_multival, 0.0):
            return False
        # if weighted_mean is 0.0, then reuse will take no effect anyway
        return to_return and self.weighted_mean > 0.0 and self.keyframe.mult > 0.0
#--------------------------------


class ContextExtrasGroup:
    def __init__(self):
        self.context_ref: ContextRef = None
        self.naive_reuse: NaiveReuse = None
    
    def get_extras_list(self) -> list[ContextExtra]:
        extras_list = []
        if self.context_ref is not None:
            extras_list.append(self.context_ref)
        if self.naive_reuse is not None:
            extras_list.append(self.naive_reuse)
        return extras_list

    def initialize_timesteps(self, model: BaseModel):
        for extra in self.get_extras_list():
            extra.initialize_timesteps(model)

    def prepare_current(self, t: Tensor):
        for extra in self.get_extras_list():
            extra.prepare_current(t)

    def should_run_context_ref(self):
        if not self.context_ref:
            return False
        return self.context_ref.should_run()
    
    def should_run_naive_reuse(self):
        if not self.naive_reuse:
            return False
        return self.naive_reuse.should_run()

    def add(self, extra: ContextExtra):
        if type(extra) == ContextRef:
            self.context_ref = extra
        elif type(extra) == NaiveReuse:
            self.naive_reuse = extra
        else:
            raise Exception(f"Unrecognized ContextExtras type: {type(extra)}")
    
    def cleanup(self):
        for extra in self.get_extras_list():
            extra.cleanup()

    def clone(self):
        cloned = ContextExtrasGroup()
        cloned.context_ref = self.context_ref
        cloned.naive_reuse = self.naive_reuse
        return cloned