File size: 57,338 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
import copy
from typing import Union, Callable
from collections import namedtuple

from einops import rearrange
from torch import Tensor
import torch.nn.functional as F
import torch
import uuid
import math

import comfy.conds
import comfy.lora
import comfy.model_management
import comfy.utils
from comfy.model_patcher import ModelPatcher
from comfy.patcher_extension import CallbacksMP, WrappersMP, PatcherInjection
from comfy.model_base import BaseModel
from comfy.sd import CLIP, VAE

from .ad_settings import AnimateDiffSettings, AdjustPE, AdjustWeight
from .adapter_cameractrl import CameraPoseEncoder, CameraEntry, prepare_pose_embedding
from .context import ContextOptions, ContextOptions, ContextOptionsGroup
from .motion_module_ad import (AnimateDiffModel, AnimateDiffFormat, AnimateDiffInfo, EncoderOnlyAnimateDiffModel, VersatileAttention, PerBlock, AllPerBlocks,
                               VanillaTemporalModule, has_mid_block, normalize_ad_state_dict, get_position_encoding_max_len)
from .logger import logger
from .utils_motion import (ADKeyframe, ADKeyframeGroup, MotionCompatibilityError, InputPIA,
                           get_combined_multival, get_combined_input, get_combined_input_effect_multival,
                           ade_broadcast_image_to, extend_to_batch_size, prepare_mask_batch)
from .conditioning import HookRef, LoraHook, LoraHookGroup, LoraHookMode
from .motion_lora import MotionLoraInfo, MotionLoraList
from .utils_model import get_motion_lora_path, get_motion_model_path, get_sd_model_type, vae_encode_raw_batched
from .sample_settings import SampleSettings, SeedNoiseGeneration
from .dinklink import DinkLinkConst, get_dinklink, get_acn_outer_sample_wrapper


def prepare_dinklink_register_definitions():
    # expose create_MotionModelPatcher
    d = get_dinklink()
    link_ade = d.setdefault(DinkLinkConst.ADE, {})
    link_ade[DinkLinkConst.ADE_CREATE_MOTIONMODELPATCHER] = create_MotionModelPatcher


class MotionModelPatcher(ModelPatcher):
    '''Class used only for type hints.'''
    def __init__(self):
        self.model: AnimateDiffModel


class ModelPatcherHelper:
    SAMPLE_SETTINGS = "ADE_sample_settings"
    PARAMS = "ADE_params"
    ADE = "ADE"

    def __init__(self, model: ModelPatcher):
        self.model = model

    def set_all_properties(self, outer_sampler_wrapper: Callable, calc_cond_batch_wrapper: Callable,
                           params: 'InjectionParams', sample_settings: SampleSettings=None, motion_models: 'MotionModelGroup'=None):
        self.set_outer_sample_wrapper(outer_sampler_wrapper)
        self.set_calc_cond_batch_wrapper(calc_cond_batch_wrapper)
        self.set_sample_settings(sample_settings = sample_settings if sample_settings is not None else SampleSettings())
        self.set_params(params)
        if motion_models is not None:
            self.set_motion_models(motion_models.models.copy())
            self.set_forward_timestep_embed_patch()
        else:
            self.remove_motion_models()
            self.remove_forward_timestep_embed_patch()

    def get_motion_models(self) -> list[MotionModelPatcher]:
        return self.model.additional_models.get(self.ADE, [])

    def set_motion_models(self, motion_models: list[MotionModelPatcher]):
        self.model.set_additional_models(self.ADE, motion_models)
        self.model.set_injections(self.ADE,
                                  [PatcherInjection(inject=inject_motion_models, eject=eject_motion_models)])

    def remove_motion_models(self):
        self.model.remove_additional_models(self.ADE)
        self.model.remove_injections(self.ADE)

    def cleanup_motion_models(self):
        for motion_model in self.get_motion_models():
            motion_model.cleanup()


    def set_forward_timestep_embed_patch(self):
        self.remove_forward_timestep_embed_patch()
        self.model.set_model_forward_timestep_embed_patch(create_forward_timestep_embed_patch())

    def remove_forward_timestep_embed_patch(self):
        if "transformer_options" in self.model.model_options:
            transformer_options = self.model.model_options["transformer_options"]
            if "patches" in transformer_options:
                patches = transformer_options["patches"]
                if "forward_timestep_embed_patch" in patches:
                    forward_timestep_patches: list = patches["forward_timestep_embed_patch"]
                    to_remove = []
                    for idx, patch in enumerate(forward_timestep_patches):
                        if patch[1] == forward_timestep_embed_patch_ade:
                            to_remove.append(idx)
                    for idx in to_remove:
                        forward_timestep_patches.pop(idx)


    ##########################
    # motion models helpers
    def set_video_length(self, video_length: int, full_length: int):
        for motion_model in self.get_motion_models():
            motion_model.model.set_video_length(video_length=video_length, full_length=full_length)
    
    def get_name_string(self, show_version=False):
        identifiers = []
        for motion_model in self.get_motion_models():
            id = motion_model.model.mm_info.mm_name
            if show_version:
                id += f":{motion_model.model.mm_info.mm_version}"
            identifiers.append(id)
        return ", ".join(identifiers)
    ##########################


    def get_sample_settings(self) -> SampleSettings:
        return self.model.get_attachment(self.SAMPLE_SETTINGS)
    
    def set_sample_settings(self, sample_settings: SampleSettings):
        self.model.set_attachments(self.SAMPLE_SETTINGS, sample_settings)
    

    def get_params(self) -> 'InjectionParams':
        return self.model.get_attachment(self.PARAMS)
    
    def set_params(self, params: 'InjectionParams'):
        self.model.set_attachments(self.PARAMS, params)
        if params.context_options.context_length is not None:
            self.set_ACN_outer_sample_wrapper(throw_exception=False)
        elif params.context_options.extras.context_ref is not None:
            self.set_ACN_outer_sample_wrapper(throw_exception=True)

    def set_ACN_outer_sample_wrapper(self, throw_exception=True):
        # get wrapper to register from Advanced-ControlNet via DinkLink shared dict
        wrapper_info = get_acn_outer_sample_wrapper(throw_exception)
        if wrapper_info is None:
            return
        wrapper_type, key, wrapper = wrapper_info
        if len(self.model.get_wrappers(wrapper_type, key)) == 0:
            self.model.add_wrapper_with_key(wrapper_type, key, wrapper)

    def set_outer_sample_wrapper(self, wrapper: Callable):
        self.model.remove_wrappers_with_key(WrappersMP.OUTER_SAMPLE, self.ADE)
        self.model.add_wrapper_with_key(WrappersMP.OUTER_SAMPLE, self.ADE, wrapper)
    
    def set_calc_cond_batch_wrapper(self, wrapper: Callable):
        self.model.remove_wrappers_with_key(WrappersMP.CALC_COND_BATCH, self.ADE)
        self.model.add_wrapper_with_key(WrappersMP.CALC_COND_BATCH, self.ADE, wrapper)

    def remove_wrappers(self):
        self.model.remove_wrappers_with_key(WrappersMP.OUTER_SAMPLE, self.ADE)
        self.model.remove_wrappers_with_key(WrappersMP.CALC_COND_BATCH, self.ADE)

    def pre_run(self):
        # TODO: could implement this as a ModelPatcher ON_PRE_RUN callback
        for motion_model in self.get_motion_models():
            motion_model.pre_run()
        self.get_sample_settings().pre_run(self.model)


def inject_motion_models(patcher: ModelPatcher):
    helper = ModelPatcherHelper(patcher)
    motion_models = helper.get_motion_models()
    for mm in motion_models:
        mm.model.inject(patcher)


def eject_motion_models(patcher: ModelPatcher):
    helper = ModelPatcherHelper(patcher)
    motion_models = helper.get_motion_models()
    for mm in motion_models:
        mm.model.eject(patcher)


def create_forward_timestep_embed_patch():
    return (VanillaTemporalModule, forward_timestep_embed_patch_ade)

def forward_timestep_embed_patch_ade(layer, x, emb, context, transformer_options, output_shape, time_context, num_video_frames, image_only_indicator, *args, **kwargs):
    return layer(x, context, transformer_options=transformer_options)


def create_MotionModelPatcher(model, load_device, offload_device) -> MotionModelPatcher:
    patcher = ModelPatcher(model, load_device=load_device, offload_device=offload_device)
    ade = ModelPatcherHelper.ADE
    patcher.add_callback_with_key(CallbacksMP.ON_LOAD, ade, _mm_patch_lowvram_extras_callback)
    patcher.add_callback_with_key(CallbacksMP.ON_LOAD, ade, _mm_handle_float8_pe_tensors_callback)
    patcher.add_callback_with_key(CallbacksMP.ON_PRE_RUN, ade, _mm_pre_run_callback)
    patcher.add_callback_with_key(CallbacksMP.ON_CLEANUP, ade, _mm_clean_callback)
    patcher.set_attachments(ade, MotionModelAttachment())
    return patcher


def _mm_patch_lowvram_extras_callback(self: MotionModelPatcher, device_to, lowvram_model_memory, *args, **kwargs):
    if lowvram_model_memory > 0:
        # figure out the tensors (likely pe's) that should be cast to device besides just the named_modules
        remaining_tensors = list(self.model.state_dict().keys())
        named_modules = []
        for n, _ in self.model.named_modules():
            named_modules.append(n)
            named_modules.append(f"{n}.weight")
            named_modules.append(f"{n}.bias")
        for name in named_modules:
            if name in remaining_tensors:
                remaining_tensors.remove(name)

        for key in remaining_tensors:
            self.patch_weight_to_device(key, device_to)
            if device_to is not None:
                comfy.utils.set_attr(self.model, key, comfy.utils.get_attr(self.model, key).to(device_to))

def _mm_handle_float8_pe_tensors_callback(self: MotionModelPatcher, *args, **kwargs):
    remaining_tensors = list(self.model.state_dict().keys())
    pe_tensors = [x for x in remaining_tensors if '.pe' in x]
    is_first = True
    for key in pe_tensors:
        if is_first:
            is_first = False
            if comfy.utils.get_attr(self.model, key).dtype not in [torch.float8_e5m2, torch.float8_e4m3fn]:
                break
        comfy.utils.set_attr(self.model, key, comfy.utils.get_attr(self.model, key).half())

def _mm_pre_run_callback(self: MotionModelPatcher, *args, **kwargs):
    attachment = get_mm_attachment(self)
    attachment.pre_run(self)

def _mm_clean_callback(self: MotionModelPatcher, *args, **kwargs):
    attachment = get_mm_attachment(self)
    attachment.cleanup(self)


def get_mm_attachment(patcher: MotionModelPatcher) -> 'MotionModelAttachment':
    return patcher.get_attachment(ModelPatcherHelper.ADE)


class MotionModelAttachment:
    def __init__(self):
        self.timestep_percent_range = (0.0, 1.0)
        self.timestep_range: tuple[float, float] = None
        self.keyframes: ADKeyframeGroup = ADKeyframeGroup()

        self.scale_multival: Union[float, Tensor, None] = None
        self.effect_multival: Union[float, Tensor, None] = None
        self.per_block_list: Union[list[PerBlock], None] = None

        # AnimateLCM-I2V
        self.orig_ref_drift: float = None
        self.orig_insertion_weights: list[float] = None
        self.orig_apply_ref_when_disabled = False
        self.orig_img_latents: Tensor = None
        self.img_features: list[int, Tensor] = None  # temporary
        self.img_latents_shape: tuple = None

        # CameraCtrl
        self.orig_camera_entries: list[CameraEntry] = None
        self.camera_features: list[Tensor] = None  # temporary
        self.camera_features_shape: tuple = None
        self.cameractrl_multival: Union[float, Tensor] = None

        # PIA
        self.orig_pia_images: Tensor = None
        self.pia_vae: VAE = None
        self.pia_input: InputPIA = None
        self.cached_pia_c_concat: comfy.conds.CONDNoiseShape = None  # cached
        self.prev_pia_latents_shape: tuple = None
        self.prev_current_pia_input: InputPIA = None
        self.pia_multival: Union[float, Tensor] = None

        # FancyVideo
        self.orig_fancy_images: Tensor = None
        self.fancy_vae: VAE = None
        self.cached_fancy_c_concat: comfy.conds.CONDNoiseShape = None  # cached
        self.prev_fancy_latents_shape: tuple = None
        self.fancy_multival: Union[float, Tensor] = None

        # temporary variables
        self.current_used_steps = 0
        self.current_keyframe: ADKeyframe = None
        self.current_index = -1
        self.previous_t = -1
        self.current_scale: Union[float, Tensor] = None
        self.current_effect: Union[float, Tensor] = None
        self.current_cameractrl_effect: Union[float, Tensor] = None
        self.current_pia_input: InputPIA = None
        self.combined_scale: Union[float, Tensor] = None
        self.combined_effect: Union[float, Tensor] = None
        self.combined_per_block_list: Union[float, Tensor] = None
        self.combined_cameractrl_effect: Union[float, Tensor] = None
        self.combined_pia_mask: Union[float, Tensor] = None
        self.combined_pia_effect: Union[float, Tensor] = None
        self.was_within_range = False
        self.prev_sub_idxs = None
        self.prev_batched_number = None

    def pre_run(self, patcher: MotionModelPatcher):
        self.cleanup(patcher)
        patcher.model.set_scale(self.scale_multival, self.per_block_list)
        patcher.model.set_effect(self.effect_multival, self.per_block_list)
        patcher.model.set_cameractrl_effect(self.cameractrl_multival)
        if patcher.model.img_encoder is not None:
            patcher.model.img_encoder.set_ref_drift(self.orig_ref_drift)
            patcher.model.img_encoder.set_insertion_weights(self.orig_insertion_weights)

    def initialize_timesteps(self, model: BaseModel):
        self.timestep_range = (model.model_sampling.percent_to_sigma(self.timestep_percent_range[0]),
                               model.model_sampling.percent_to_sigma(self.timestep_percent_range[1]))
        if self.keyframes is not None:
            for keyframe in self.keyframes.keyframes:
                keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)

    def prepare_current_keyframe(self, patcher: MotionModelPatcher, x: Tensor, t: Tensor):
        curr_t: float = t[0]
        # if curr_t was previous_t, then do nothing (already accounted for this step)
        if curr_t == self.previous_t:
            return
        prev_index = self.current_index
        # if met guaranteed steps, look for next keyframe in case need to switch
        if self.current_keyframe is None or self.current_used_steps >= self.current_keyframe.guarantee_steps:
            # if has next index, loop through and see if need to switch
            if self.keyframes.has_index(self.current_index+1):
                for i in range(self.current_index+1, len(self.keyframes)):
                    eval_kf = self.keyframes[i]
                    # check if start_t is greater or equal to curr_t
                    # NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
                    if eval_kf.start_t >= curr_t:
                        self.current_index = i
                        self.current_keyframe = eval_kf
                        self.current_used_steps = 0
                        # keep track of scale and effect multivals, accounting for inherit_missing
                        if self.current_keyframe.has_scale():
                            self.current_scale = self.current_keyframe.scale_multival
                        elif not self.current_keyframe.inherit_missing:
                            self.current_scale = None
                        if self.current_keyframe.has_effect():
                            self.current_effect = self.current_keyframe.effect_multival
                        elif not self.current_keyframe.inherit_missing:
                            self.current_effect = None
                        if self.current_keyframe.has_cameractrl_effect():
                            self.current_cameractrl_effect = self.current_keyframe.cameractrl_multival
                        elif not self.current_keyframe.inherit_missing:
                            self.current_cameractrl_effect = None
                        if self.current_keyframe.has_pia_input():
                            self.current_pia_input = self.current_keyframe.pia_input
                        elif not self.current_keyframe.inherit_missing:
                            self.current_pia_input = None
                        # if guarantee_steps greater than zero, stop searching for other keyframes
                        if self.current_keyframe.guarantee_steps > 0:
                            break
                    # if eval_kf is outside the percent range, stop looking further
                    else:
                        break
        # if index changed, apply new combined values
        if prev_index != self.current_index:
            # combine model's scale and effect with keyframe's scale and effect
            self.combined_scale = get_combined_multival(self.scale_multival, self.current_scale)
            self.combined_effect = get_combined_multival(self.effect_multival, self.current_effect)
            self.combined_cameractrl_effect = get_combined_multival(self.cameractrl_multival, self.current_cameractrl_effect)
            self.combined_pia_mask = get_combined_input(self.pia_input, self.current_pia_input, x)
            self.combined_pia_effect = get_combined_input_effect_multival(self.pia_input, self.current_pia_input)
            # apply scale and effect
            patcher.model.set_scale(self.combined_scale, self.per_block_list)
            patcher.model.set_effect(self.combined_effect, self.per_block_list) # TODO: set combined_per_block_list
            patcher.model.set_cameractrl_effect(self.combined_cameractrl_effect)
        # apply effect - if not within range, set effect to 0, effectively turning model off
        if curr_t > self.timestep_range[0] or curr_t < self.timestep_range[1]:
            patcher.model.set_effect(0.0)
            self.was_within_range = False
        else:
            # if was not in range last step, apply effect to toggle AD status
            if not self.was_within_range:
                patcher.model.set_effect(self.combined_effect, self.per_block_list)
                self.was_within_range = True
        # update steps current keyframe is used
        self.current_used_steps += 1
        # update previous_t
        self.previous_t = curr_t

    def prepare_alcmi2v_features(self, patcher: MotionModelPatcher, x: Tensor, cond_or_uncond: list[int], ad_params: dict[str], latent_format):
        # if no img_encoder, done
        if patcher.model.img_encoder is None:
            return
        batched_number = len(cond_or_uncond)
        full_length = ad_params["full_length"]
        sub_idxs = ad_params["sub_idxs"]
        goal_length = x.size(0) // batched_number
        # calculate img_features if needed
        if (self.img_latents_shape is None or sub_idxs != self.prev_sub_idxs or batched_number != self.prev_batched_number
                or x.shape[2] != self.img_latents_shape[2] or x.shape[3] != self.img_latents_shape[3]):
            if sub_idxs is not None and self.orig_img_latents.size(0) >= full_length:
                img_latents = comfy.utils.common_upscale(self.orig_img_latents[sub_idxs], x.shape[3], x.shape[2], 'nearest-exact', 'center').to(x.dtype).to(x.device)
            else:
                img_latents = comfy.utils.common_upscale(self.orig_img_latents, x.shape[3], x.shape[2], 'nearest-exact', 'center').to(x.dtype).to(x.device)
            img_latents: Tensor = latent_format.process_in(img_latents)
            # make sure img_latents matches goal_length
            if goal_length != img_latents.shape[0]:
                img_latents = ade_broadcast_image_to(img_latents, goal_length, batched_number)
            img_features = patcher.model.img_encoder(img_latents, goal_length, batched_number)
            patcher.model.set_img_features(img_features=img_features, apply_ref_when_disabled=self.orig_apply_ref_when_disabled)
            # cache values for next step
            self.img_latents_shape = img_latents.shape
        self.prev_sub_idxs = sub_idxs
        self.prev_batched_number = batched_number

    def prepare_camera_features(self, patcher: MotionModelPatcher, x: Tensor, cond_or_uncond: list[int], ad_params: dict[str]):
        # if no camera_encoder, done
        if patcher.model.camera_encoder is None:
            return
        batched_number = len(cond_or_uncond)
        full_length = ad_params["full_length"]
        sub_idxs = ad_params["sub_idxs"]
        goal_length = x.size(0) // batched_number
        # calculate camera_features if needed
        if self.camera_features_shape is None or sub_idxs != self.prev_sub_idxs or batched_number != self.prev_batched_number:
            # make sure there are enough camera_poses to match full_length
            camera_poses = self.orig_camera_entries.copy()
            if len(camera_poses) < full_length:
                for i in range(full_length-len(camera_poses)):
                    camera_poses.append(camera_poses[-1])
            if sub_idxs is not None:
                camera_poses = [camera_poses[idx] for idx in sub_idxs]
            # make sure camera_poses matches goal_length
            if len(camera_poses) > goal_length:
                camera_poses = camera_poses[:goal_length]
            elif len(camera_poses) < goal_length:
                # pad the camera_poses with the last element to match goal_length
                for i in range(goal_length-len(camera_poses)):
                    camera_poses.append(camera_poses[-1])
            # create encoded embeddings
            b, c, h, w = x.shape
            plucker_embedding = prepare_pose_embedding(camera_poses, image_width=w*8, image_height=h*8).to(dtype=x.dtype, device=x.device)
            camera_embedding = patcher.model.camera_encoder(plucker_embedding, video_length=goal_length, batched_number=batched_number)
            patcher.model.set_camera_features(camera_features=camera_embedding)
            self.camera_features_shape = len(camera_embedding)
        self.prev_sub_idxs = sub_idxs
        self.prev_batched_number = batched_number

    def get_pia_c_concat(self, model: BaseModel, x: Tensor) -> Tensor:
        # if have cached shape, check if matches - if so, return cached pia_latents
        if self.prev_pia_latents_shape is not None:
            if self.prev_pia_latents_shape[0] == x.shape[0] and self.prev_pia_latents_shape[2] == x.shape[2] and self.prev_pia_latents_shape[3] == x.shape[3]:
                # if mask is also the same for this timestep, then return cached
                if self.prev_current_pia_input == self.current_pia_input:
                    return self.cached_pia_c_concat
                # otherwise, adjust new mask, and create new cached_pia_c_concat
                b, c, h ,w = x.shape
                mask = prepare_mask_batch(self.combined_pia_mask, x.shape)
                mask = extend_to_batch_size(mask, b)
                # make sure to update prev_current_pia_input to know when is changed
                self.prev_current_pia_input = self.current_pia_input
                # TODO: handle self.combined_pia_effect eventually (feature hidden for now)
                # the first index in dim=1 is the mask that needs to be updated - update in place
                self.cached_pia_c_concat.cond[:, :1, :, :] = mask
                return self.cached_pia_c_concat
        self.prev_pia_latents_shape = None
        # otherwise, x shape should be the cached pia_latents_shape
        # get currently used models so they can be properly reloaded after perfoming VAE Encoding
        cached_loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
        try:
            b, c, h ,w = x.shape
            usable_ref = self.orig_pia_images[:b]
            # in diffusers, the image is scaled from [-1, 1] instead of default [0, 1],
            # but form my testing, that blows out the images here, so I skip it
            # usable_images = usable_images * 2 - 1
            # resize images to latent's dims
            usable_ref = usable_ref.movedim(-1,1)
            usable_ref = comfy.utils.common_upscale(samples=usable_ref, width=w*self.pia_vae.downscale_ratio, height=h*self.pia_vae.downscale_ratio,
                                                    upscale_method="bilinear", crop="center")
            usable_ref = usable_ref.movedim(1,-1)
            # VAE encode images
            logger.info("VAE Encoding PIA input images...")
            usable_ref = model.process_latent_in(vae_encode_raw_batched(vae=self.pia_vae, pixels=usable_ref, show_pbar=False))
            logger.info("VAE Encoding PIA input images complete.")
            # make pia_latents match expected length
            usable_ref = extend_to_batch_size(usable_ref, b)
            self.prev_pia_latents_shape = x.shape
            # now, take care of the mask
            mask = prepare_mask_batch(self.combined_pia_mask, x.shape)
            mask = extend_to_batch_size(mask, b)
            #mask = mask.unsqueeze(1)
            self.prev_current_pia_input = self.current_pia_input
            if type(self.combined_pia_effect) == Tensor or not math.isclose(self.combined_pia_effect, 1.0):
                real_pia_effect = self.combined_pia_effect
                if type(self.combined_pia_effect) == Tensor:
                    real_pia_effect = extend_to_batch_size(prepare_mask_batch(self.combined_pia_effect, x.shape), b)
                zero_mask = torch.zeros_like(mask)
                mask = mask * real_pia_effect + zero_mask * (1.0 - real_pia_effect)
                del zero_mask
                zero_usable_ref = torch.zeros_like(usable_ref)
                usable_ref = usable_ref * real_pia_effect + zero_usable_ref * (1.0 - real_pia_effect)
                del zero_usable_ref
            # cache pia c_concat
            self.cached_pia_c_concat = comfy.conds.CONDNoiseShape(torch.cat([mask, usable_ref], dim=1))
            return self.cached_pia_c_concat
        finally:
            comfy.model_management.load_models_gpu(cached_loaded_models)

    def get_fancy_c_concat(self, model: BaseModel, x: Tensor) -> Tensor:
        # if have cached shape, check if matches - if so, return cached fancy_latents
        if self.prev_fancy_latents_shape is not None:
            if self.prev_fancy_latents_shape[0] == x.shape[0] and self.prev_fancy_latents_shape[-2] == x.shape[-2] and self.prev_fancy_latents_shape[-1] == x.shape[-1]:
                # TODO: if mask is also the same for this timestep, then retucn cached
                return self.cached_fancy_c_concat
        self.prev_fancy_latents_shape = None
        # otherwise, x shape should be the cached fancy_latents_shape
        # get currently used models so they can be properly reloaded after performing VAE Encoding
        cached_loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
        try:
            b, c, h, w = x.shape
            usable_ref = self.orig_fancy_images[:b]
            # resize images to latent's dims
            usable_ref = usable_ref.movedim(-1,1)
            usable_ref = comfy.utils.common_upscale(samples=usable_ref, width=w*self.fancy_vae.downscale_ratio, height=h*self.fancy_vae.downscale_ratio,
                                                    upscale_method="bilinear", crop="center")
            usable_ref = usable_ref.movedim(1,-1)
            # VAE encode images
            logger.info("VAE Encoding FancyVideo input images...")
            usable_ref: Tensor = model.process_latent_in(vae_encode_raw_batched(vae=self.fancy_vae, pixels=usable_ref, show_pbar=False))
            logger.info("VAE Encoding FancyVideo input images complete.")
            self.prev_fancy_latents_shape = x.shape
            # TODO: experiment with indexes that aren't the first
            # pad usable_ref with zeros
            ref_length = usable_ref.shape[0]
            pad_length = b - ref_length
            zero_ref = torch.zeros([pad_length, c, h, w], dtype=usable_ref.dtype, device=usable_ref.device)
            usable_ref = torch.cat([usable_ref, zero_ref], dim=0)
            del zero_ref
            # create mask
            mask_ones = torch.ones([ref_length, 1, h, w], dtype=usable_ref.dtype, device=usable_ref.device)
            mask_zeros = torch.zeros([pad_length, 1, h, w], dtype=usable_ref.dtype, device=usable_ref.device)
            mask = torch.cat([mask_ones, mask_zeros], dim=0)
            # TODO: experiment with mask strength
            # cache fancy c_concat - ref first, then mask
            self.cached_fancy_c_concat = comfy.conds.CONDNoiseShape(torch.cat([usable_ref, mask], dim=1))
            return self.cached_fancy_c_concat
        finally:
            comfy.model_management.load_models_gpu(cached_loaded_models)

    def is_pia(self, patcher: MotionModelPatcher):
        return patcher.model.mm_info.mm_format == AnimateDiffFormat.PIA and self.orig_pia_images is not None

    def is_fancyvideo(self, patcher: MotionModelPatcher):
        return patcher.model.mm_info.mm_format == AnimateDiffFormat.FANCYVIDEO

    def cleanup(self, patcher: MotionModelPatcher):
        if patcher.model is not None:
            patcher.model.cleanup()
        # AnimateLCM-I2V
        del self.img_features
        self.img_features = None
        self.img_latents_shape = None
        # CameraCtrl
        del self.camera_features
        self.camera_features = None
        self.camera_features_shape = None
        # PIA
        self.combined_pia_mask = None
        self.combined_pia_effect = None
        # Default
        self.current_used_steps = 0
        self.current_keyframe = None
        self.current_index = -1
        self.previous_t = -1
        self.current_scale = None
        self.current_effect = None
        self.combined_scale = None
        self.combined_effect = None
        self.combined_per_block_list = None
        self.was_within_range = False
        self.prev_sub_idxs = None
        self.prev_batched_number = None

    def on_model_patcher_clone(self):
        n = MotionModelAttachment()
        # extra cloned params
        n.timestep_percent_range = self.timestep_percent_range
        n.timestep_range = self.timestep_range
        n.keyframes = self.keyframes.clone()
        n.scale_multival = self.scale_multival
        n.effect_multival = self.effect_multival
        # AnimateLCM-I2V
        n.orig_img_latents = self.orig_img_latents
        n.orig_ref_drift = self.orig_ref_drift
        n.orig_insertion_weights = self.orig_insertion_weights.copy() if self.orig_insertion_weights is not None else self.orig_insertion_weights
        n.orig_apply_ref_when_disabled = self.orig_apply_ref_when_disabled
        # CameraCtrl
        n.orig_camera_entries = self.orig_camera_entries
        n.cameractrl_multival = self.cameractrl_multival
        # PIA
        n.orig_pia_images = self.orig_pia_images
        n.pia_vae = self.pia_vae
        n.pia_input = self.pia_input
        n.pia_multival = self.pia_multival
        return n


class MotionModelGroup:
    def __init__(self, init_motion_model: MotionModelPatcher=None):
        self.models: list[MotionModelPatcher] = []
        if init_motion_model is not None:
            if isinstance(init_motion_model, list):
                for m in init_motion_model:
                    self.add(m)
            else:
                self.add(init_motion_model)

    def add(self, mm: MotionModelPatcher):
        # add to end of list
        self.models.append(mm)

    def add_to_start(self, mm: MotionModelPatcher):
        self.models.insert(0, mm)

    def __getitem__(self, index) -> MotionModelPatcher:
        return self.models[index]
    
    def is_empty(self) -> bool:
        return len(self.models) == 0
    
    def clone(self) -> 'MotionModelGroup':
        cloned = MotionModelGroup()
        for mm in self.models:
            cloned.add(mm)
        return cloned
    
    def set_sub_idxs(self, sub_idxs: list[int]):
        for motion_model in self.models:
            motion_model.model.set_sub_idxs(sub_idxs=sub_idxs)
    
    def set_view_options(self, view_options: ContextOptions):
        for motion_model in self.models:
            motion_model.model.set_view_options(view_options)

    def set_video_length(self, video_length: int, full_length: int):
        for motion_model in self.models:
            motion_model.model.set_video_length(video_length=video_length, full_length=full_length)
    
    def initialize_timesteps(self, model: BaseModel):
        for motion_model in self.models:
            attachment = get_mm_attachment(motion_model)
            attachment.initialize_timesteps(model)

    def pre_run(self, model: ModelPatcher):
        for motion_model in self.models:
            motion_model.pre_run()
    
    def cleanup(self):
        for motion_model in self.models:
            motion_model.cleanup()
    
    def prepare_current_keyframe(self, x: Tensor, t: Tensor):
        for motion_model in self.models:
            attachment = get_mm_attachment(motion_model)
            attachment.prepare_current_keyframe(motion_model, x=x, t=t)

    def get_special_models(self):
        pia_motion_models: list[MotionModelPatcher] = []
        for motion_model in self.models:
            attachment = get_mm_attachment(motion_model)
            if attachment.is_pia(motion_model) or attachment.is_fancyvideo(motion_model):
                pia_motion_models.append(motion_model)
        return pia_motion_models

    def get_name_string(self, show_version=False):
        identifiers = []
        for motion_model in self.models:
            id = motion_model.model.mm_info.mm_name
            if show_version:
                id += f":{motion_model.model.mm_info.mm_version}"
            identifiers.append(id)
        return ", ".join(identifiers)


def get_vanilla_model_patcher(m: ModelPatcher) -> ModelPatcher:
    model = ModelPatcher(m.model, m.load_device, m.offload_device, m.size, weight_inplace_update=m.weight_inplace_update)
    model.patches = {}
    for k in m.patches:
        model.patches[k] = m.patches[k][:]

    model.object_patches = m.object_patches.copy()
    model.model_options = copy.deepcopy(m.model_options)
    if hasattr(model, "model_keys"):
        model.model_keys = m.model_keys
    return model


# adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/utils/convert_lora_safetensor_to_diffusers.py
# Example LoRA keys:
#   down_blocks.0.motion_modules.0.temporal_transformer.transformer_blocks.0.attention_blocks.0.processor.to_q_lora.down.weight
#   down_blocks.0.motion_modules.0.temporal_transformer.transformer_blocks.0.attention_blocks.0.processor.to_q_lora.up.weight
#
# Example model keys: 
#   down_blocks.0.motion_modules.0.temporal_transformer.transformer_blocks.0.attention_blocks.0.to_q.weight
#
def load_motion_lora_as_patches(motion_model: MotionModelPatcher, lora: MotionLoraInfo) -> None:
    def get_version(has_midblock: bool):
        return "v2" if has_midblock else "v1"

    lora_path = get_motion_lora_path(lora.name)
    logger.info(f"Loading motion LoRA {lora.name}")
    state_dict = comfy.utils.load_torch_file(lora_path)

    # remove all non-temporal keys (in case model has extra stuff in it)
    for key in list(state_dict.keys()):
        if "temporal" not in key:
            del state_dict[key]
    if len(state_dict) == 0:
        raise ValueError(f"'{lora.name}' contains no temporal keys; it is not a valid motion LoRA!")

    model_has_midblock = motion_model.model.mid_block != None
    lora_has_midblock = has_mid_block(state_dict)
    logger.info(f"Applying a {get_version(lora_has_midblock)} LoRA ({lora.name}) to a { motion_model.model.mm_info.mm_version} motion model.")

    patches = {}
    # convert lora state dict to one that matches motion_module keys and tensors
    for key in state_dict:
        # if motion_module doesn't have a midblock, skip mid_block entries
        if not model_has_midblock:
            if "mid_block" in key: continue
        # only process lora down key (we will process up at the same time as down)
        if "up." in key: continue

        # get up key version of down key
        up_key = key.replace(".down.", ".up.")

        # adapt key to match motion_module key format - remove 'processor.', '_lora', 'down.', and 'up.'
        model_key = key.replace("processor.", "").replace("_lora", "").replace("down.", "").replace("up.", "")

        # motion_module keys have a '0.' after all 'to_out.' weight keys
        if "to_out.0." not in model_key:
            model_key = model_key.replace("to_out.", "to_out.0.")
        
        weight_down = state_dict[key]
        weight_up = state_dict[up_key]
        # actual weights obtained by matrix multiplication of up and down weights
        # save as a tuple, so that (Motion)ModelPatcher's calculate_weight function detects len==1, applying it correctly
        patches[model_key] = (torch.mm(
            comfy.model_management.cast_to_device(weight_up, weight_up.device, torch.float32),
            comfy.model_management.cast_to_device(weight_down, weight_down.device, torch.float32)
            ),)
    del state_dict
    # add patches to motion ModelPatcher
    motion_model.add_patches(patches=patches, strength_patch=lora.strength)


def load_motion_module_gen1(model_name: str, model: ModelPatcher, motion_lora: MotionLoraList = None, motion_model_settings: AnimateDiffSettings = None) -> MotionModelPatcher:
    model_path = get_motion_model_path(model_name)
    logger.info(f"Loading motion module {model_name}")
    mm_state_dict = comfy.utils.load_torch_file(model_path, safe_load=True)
    # TODO: check for empty state dict?
    # get normalized state_dict and motion model info
    mm_state_dict, mm_info = normalize_ad_state_dict(mm_state_dict=mm_state_dict, mm_name=model_name)
    # check that motion model is compatible with sd model
    model_sd_type = get_sd_model_type(model)
    if model_sd_type != mm_info.sd_type:
        raise MotionCompatibilityError(f"Motion module '{mm_info.mm_name}' is intended for {mm_info.sd_type} models, " \
                                       + f"but the provided model is type {model_sd_type}.")
    # apply motion model settings
    mm_state_dict = apply_mm_settings(model_dict=mm_state_dict, mm_settings=motion_model_settings)
    # initialize AnimateDiffModelWrapper
    ad_wrapper = AnimateDiffModel(mm_state_dict=mm_state_dict, mm_info=mm_info)
    ad_wrapper.to(model.model_dtype())
    ad_wrapper.to(model.offload_device)
    load_result = ad_wrapper.load_state_dict(mm_state_dict, strict=False)
    verify_load_result(load_result=load_result, mm_info=mm_info)
    # wrap motion_module into a ModelPatcher, to allow motion lora patches
    motion_model = create_MotionModelPatcher(model=ad_wrapper, load_device=model.load_device, offload_device=model.offload_device)
    # load motion_lora, if present
    if motion_lora is not None:
        for lora in motion_lora.loras:
            load_motion_lora_as_patches(motion_model, lora)
    return motion_model


def load_motion_module_gen2(model_name: str, motion_model_settings: AnimateDiffSettings = None) -> MotionModelPatcher:
    model_path = get_motion_model_path(model_name)
    logger.info(f"Loading motion module {model_name} via Gen2")
    mm_state_dict = comfy.utils.load_torch_file(model_path, safe_load=True)
    # TODO: check for empty state dict?
    # get normalized state_dict and motion model info (converts alternate AD models like HotshotXL into AD keys)
    mm_state_dict, mm_info = normalize_ad_state_dict(mm_state_dict=mm_state_dict, mm_name=model_name)
    # apply motion model settings
    mm_state_dict = apply_mm_settings(model_dict=mm_state_dict, mm_settings=motion_model_settings)
    # initialize AnimateDiffModelWrapper
    ad_wrapper = AnimateDiffModel(mm_state_dict=mm_state_dict, mm_info=mm_info)
    ad_wrapper.to(comfy.model_management.unet_dtype())
    ad_wrapper.to(comfy.model_management.unet_offload_device())
    load_result = ad_wrapper.load_state_dict(mm_state_dict, strict=False)
    verify_load_result(load_result=load_result, mm_info=mm_info)
    # wrap motion_module into a ModelPatcher, to allow motion lora patches
    motion_model = create_MotionModelPatcher(model=ad_wrapper, load_device=comfy.model_management.get_torch_device(),
                                              offload_device=comfy.model_management.unet_offload_device())
    return motion_model


IncompatibleKeys = namedtuple('IncompatibleKeys', ['missing_keys', 'unexpected_keys'])
def verify_load_result(load_result: IncompatibleKeys, mm_info: AnimateDiffInfo):
    error_msgs: list[str] = []
    is_animatelcm = mm_info.mm_format==AnimateDiffFormat.ANIMATELCM

    remove_missing_idxs = []
    remove_unexpected_idxs = []
    for idx, key in enumerate(load_result.missing_keys):
        # NOTE: AnimateLCM has no pe keys in the model file, so any errors associated with missing pe keys can be ignored
        if is_animatelcm and "pos_encoder.pe" in key:
            remove_missing_idxs.append(idx)
    # remove any keys to ignore in reverse order (to preserve idx correlation)
    for idx in reversed(remove_unexpected_idxs):
        load_result.unexpected_keys.pop(idx)
    for idx in reversed(remove_missing_idxs):
        load_result.missing_keys.pop(idx)
    # copied over from torch.nn.Module.module class Module's load_state_dict func
    if len(load_result.unexpected_keys) > 0:
        error_msgs.insert(
            0, 'Unexpected key(s) in state_dict: {}. '.format(
                ', '.join(f'"{k}"' for k in load_result.unexpected_keys)))
    if len(load_result.missing_keys) > 0:
        error_msgs.insert(
            0, 'Missing key(s) in state_dict: {}. '.format(
                ', '.join(f'"{k}"' for k in load_result.missing_keys)))
    if len(error_msgs) > 0:
        raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                            mm_info.mm_name, "\n\t".join(error_msgs)))
    

def create_fresh_motion_module(motion_model: MotionModelPatcher) -> MotionModelPatcher:
    ad_wrapper = AnimateDiffModel(mm_state_dict=motion_model.model.state_dict(), mm_info=motion_model.model.mm_info)
    ad_wrapper.to(comfy.model_management.unet_dtype())
    ad_wrapper.to(comfy.model_management.unet_offload_device())
    ad_wrapper.load_state_dict(motion_model.model.state_dict())
    return create_MotionModelPatcher(model=ad_wrapper, load_device=comfy.model_management.get_torch_device(),
                                      offload_device=comfy.model_management.unet_offload_device())


def create_fresh_encoder_only_model(motion_model: MotionModelPatcher) -> MotionModelPatcher:
    ad_wrapper = EncoderOnlyAnimateDiffModel(mm_state_dict=motion_model.model.state_dict(), mm_info=motion_model.model.mm_info)
    ad_wrapper.to(comfy.model_management.unet_dtype())
    ad_wrapper.to(comfy.model_management.unet_offload_device())
    ad_wrapper.load_state_dict(motion_model.model.state_dict(), strict=False)
    return create_MotionModelPatcher(model=ad_wrapper, load_device=comfy.model_management.get_torch_device(),
                                      offload_device=comfy.model_management.unet_offload_device())


def inject_img_encoder_into_model(motion_model: MotionModelPatcher, w_encoder: MotionModelPatcher):
    motion_model.model.init_img_encoder()
    motion_model.model.img_encoder.to(comfy.model_management.unet_dtype())
    motion_model.model.img_encoder.to(comfy.model_management.unet_offload_device())
    motion_model.model.img_encoder.load_state_dict(w_encoder.model.img_encoder.state_dict())


def inject_pia_conv_in_into_model(motion_model: MotionModelPatcher, w_pia: MotionModelPatcher):
    motion_model.model.init_conv_in(w_pia.model.state_dict())
    motion_model.model.conv_in.to(comfy.model_management.unet_dtype())
    motion_model.model.conv_in.to(comfy.model_management.unet_offload_device())
    motion_model.model.conv_in.load_state_dict(w_pia.model.conv_in.state_dict())
    motion_model.model.mm_info.mm_format = AnimateDiffFormat.PIA


def inject_camera_encoder_into_model(motion_model: MotionModelPatcher, camera_ctrl_name: str):
    camera_ctrl_path = get_motion_model_path(camera_ctrl_name)
    full_state_dict = comfy.utils.load_torch_file(camera_ctrl_path, safe_load=True)
    camera_state_dict: dict[str, Tensor] = dict()
    attention_state_dict: dict[str, Tensor] = dict()
    for key in full_state_dict:
        if key.startswith("encoder"):
            camera_state_dict[key] = full_state_dict[key]
        elif "qkv_merge" in key:
            attention_state_dict[key] = full_state_dict[key]
    # verify has necessary keys
    if len(camera_state_dict) == 0:
        raise Exception("Provided CameraCtrl model had no Camera Encoder-related keys; not a valid CameraCtrl model!")
    if len(attention_state_dict) == 0:
        raise Exception("Provided CameraCtrl model had no qkv_merge keys; not a valid CameraCtrl model!")
    # initialize CameraPoseEncoder on motion model, and load keys
    camera_encoder = CameraPoseEncoder(channels=motion_model.model.layer_channels, nums_rb=2, ops=motion_model.model.ops).to(
        device=comfy.model_management.unet_offload_device(),
        dtype=comfy.model_management.unet_dtype()
    )
    camera_encoder.load_state_dict(camera_state_dict)
    camera_encoder.temporal_pe_max_len = get_position_encoding_max_len(camera_state_dict, mm_name=camera_ctrl_name, mm_format=AnimateDiffFormat.ANIMATEDIFF)
    motion_model.model.set_camera_encoder(camera_encoder=camera_encoder)
    # initialize qkv_merge on specific attention blocks, and load keys
    for key in attention_state_dict:
        key = key.strip()
        # to avoid handling the same qkv_merge twice, only pay attention to the bias keys (bias+weight handled together)
        if key.endswith("weight"):
            continue
        attr_path = key.split(".processor.qkv_merge")[0]
        base_key = key.split(".bias")[0]
        # first, initialize qkv_merge on model
        attention_obj: VersatileAttention  = comfy.utils.get_attr(motion_model.model, attr_path)
        attention_obj.init_qkv_merge(ops=motion_model.model.ops)
        # then, apply weights to qkv_merge
        qkv_merge_state_dict = {}
        qkv_merge_state_dict["weight"] = attention_state_dict[f"{base_key}.weight"]
        qkv_merge_state_dict["bias"] = attention_state_dict[f"{base_key}.bias"]
        attention_obj.qkv_merge.load_state_dict(qkv_merge_state_dict)
        attention_obj.qkv_merge = attention_obj.qkv_merge.to(
            device=comfy.model_management.unet_offload_device(),
            dtype=comfy.model_management.unet_dtype()
        )
    

def validate_model_compatibility_gen2(model: ModelPatcher, motion_model: MotionModelPatcher):
    # check that motion model is compatible with sd model
    model_sd_type = get_sd_model_type(model)
    mm_info = motion_model.model.mm_info
    if model_sd_type != mm_info.sd_type:
        raise MotionCompatibilityError(f"Motion module '{mm_info.mm_name}' is intended for {mm_info.sd_type} models, " \
                                       + f"but the provided model is type {model_sd_type}.")


def validate_per_block_compatibility(motion_model: MotionModelPatcher, all_per_blocks: AllPerBlocks):
    if all_per_blocks is None or all_per_blocks.sd_type is None:
        return
    mm_info = motion_model.model.mm_info
    if all_per_blocks.sd_type != mm_info.sd_type:
        raise Exception(f"Per-Block provided is meant for {all_per_blocks.sd_type}, but provided motion module is for {mm_info.sd_type}.")


def interpolate_pe_to_length(model_dict: dict[str, Tensor], key: str, new_length: int):
    pe_shape = model_dict[key].shape
    temp_pe = rearrange(model_dict[key], "(t b) f d -> t b f d", t=1)
    temp_pe = F.interpolate(temp_pe, size=(new_length, pe_shape[-1]), mode="bilinear")
    temp_pe = rearrange(temp_pe, "t b f d -> (t b) f d", t=1)
    model_dict[key] = temp_pe
    del temp_pe


def interpolate_pe_to_length_diffs(model_dict: dict[str, Tensor], key: str, new_length: int):
    # TODO: fill out and try out
    pe_shape = model_dict[key].shape
    temp_pe = rearrange(model_dict[key], "(t b) f d -> t b f d", t=1)
    temp_pe = F.interpolate(temp_pe, size=(new_length, pe_shape[-1]), mode="bilinear")
    temp_pe = rearrange(temp_pe, "t b f d -> (t b) f d", t=1)
    model_dict[key] = temp_pe
    del temp_pe


def interpolate_pe_to_length_pingpong(model_dict: dict[str, Tensor], key: str, new_length: int):
    if model_dict[key].shape[1] < new_length:
        temp_pe = model_dict[key]
        flipped_temp_pe = torch.flip(temp_pe[:, 1:-1, :], [1])
        use_flipped = True
        preview_pe = None
        while model_dict[key].shape[1] < new_length:
            preview_pe = model_dict[key]
            model_dict[key] = torch.cat([model_dict[key], flipped_temp_pe if use_flipped else temp_pe], dim=1)
            use_flipped = not use_flipped
        del temp_pe
        del flipped_temp_pe
        del preview_pe
    model_dict[key] = model_dict[key][:, :new_length]


def freeze_mask_of_pe(model_dict: dict[str, Tensor], key: str):
    pe_portion = model_dict[key].shape[2] // 64
    first_pe = model_dict[key][:,:1,:]
    model_dict[key][:,:,pe_portion:] = first_pe[:,:,pe_portion:]
    del first_pe


def freeze_mask_of_attn(model_dict: dict[str, Tensor], key: str):
    attn_portion = model_dict[key].shape[0] // 2
    model_dict[key][:attn_portion,:attn_portion] *= 1.5


def apply_mm_settings(model_dict: dict[str, Tensor], mm_settings: AnimateDiffSettings) -> dict[str, Tensor]:
    if mm_settings is None:
        return model_dict
    if not mm_settings.has_anything_to_apply():
        return model_dict
    # first, handle PE Adjustments
    for adjust_pe in mm_settings.adjust_pe.adjusts:
        adjust_pe: AdjustPE
        if adjust_pe.has_anything_to_apply():
            already_printed = False
            for key in model_dict:
                if "attention_blocks" in key and "pos_encoder" in key:
                    # apply simple motion pe stretch, if needed
                    if adjust_pe.has_motion_pe_stretch():
                        original_length = model_dict[key].shape[1]
                        new_pe_length = original_length + adjust_pe.motion_pe_stretch
                        interpolate_pe_to_length(model_dict, key, new_length=new_pe_length)
                        if adjust_pe.print_adjustment and not already_printed:
                            logger.info(f"[Adjust PE]: PE Stretch from {original_length} to {new_pe_length}.")
                    # apply pe_idx_offset, if needed
                    if adjust_pe.has_initial_pe_idx_offset():
                        original_length = model_dict[key].shape[1]
                        model_dict[key] = model_dict[key][:, adjust_pe.initial_pe_idx_offset:]
                        if adjust_pe.print_adjustment and not already_printed:
                            logger.info(f"[Adjust PE]: Offsetting PEs by {adjust_pe.initial_pe_idx_offset}; PE length to shortens from {original_length} to {model_dict[key].shape[1]}.")
                    # apply has_cap_initial_pe_length, if needed
                    if adjust_pe.has_cap_initial_pe_length():
                        original_length = model_dict[key].shape[1]
                        model_dict[key] = model_dict[key][:, :adjust_pe.cap_initial_pe_length]
                        if adjust_pe.print_adjustment and not already_printed:
                            logger.info(f"[Adjust PE]: Capping PEs (initial) from {original_length} to {model_dict[key].shape[1]}.")
                    # apply interpolate_pe_to_length, if needed
                    if adjust_pe.has_interpolate_pe_to_length():
                        original_length = model_dict[key].shape[1]
                        interpolate_pe_to_length(model_dict, key, new_length=adjust_pe.interpolate_pe_to_length)
                        if adjust_pe.print_adjustment and not already_printed:
                            logger.info(f"[Adjust PE]: Interpolating PE length from {original_length} to {model_dict[key].shape[1]}.")
                    # apply final_pe_idx_offset, if needed
                    if adjust_pe.has_final_pe_idx_offset():
                        original_length = model_dict[key].shape[1]
                        model_dict[key] = model_dict[key][:, adjust_pe.final_pe_idx_offset:]
                        if adjust_pe.print_adjustment and not already_printed:
                            logger.info(f"[Adjust PE]: Capping PEs (final) from {original_length} to {model_dict[key].shape[1]}.")
                    already_printed = True
    # finally, handle Weight Adjustments
    for adjust_w in mm_settings.adjust_weight.adjusts:
        adjust_w: AdjustWeight
        if adjust_w.has_anything_to_apply():
            adjust_w.mark_attrs_as_unprinted()
            for key in model_dict:
                # apply global weight adjustments, if needed
                adjust_w.perform_applicable_ops(attr=AdjustWeight.ATTR_ALL, model_dict=model_dict, key=key)
                if "attention_blocks" in key:
                    # apply pe change, if needed
                    if "pos_encoder" in key:
                        adjust_w.perform_applicable_ops(attr=AdjustWeight.ATTR_PE, model_dict=model_dict, key=key)
                    else:
                        # apply attn change, if needed
                        adjust_w.perform_applicable_ops(attr=AdjustWeight.ATTR_ATTN, model_dict=model_dict, key=key)
                        # apply specific attn changes, if needed
                        # apply attn_q change, if needed
                        if "to_q" in key:
                            adjust_w.perform_applicable_ops(attr=AdjustWeight.ATTR_ATTN_Q, model_dict=model_dict, key=key)
                        # apply attn_q change, if needed
                        elif "to_k" in key:
                            adjust_w.perform_applicable_ops(attr=AdjustWeight.ATTR_ATTN_K, model_dict=model_dict, key=key)
                        # apply attn_q change, if needed
                        elif "to_v" in key:
                            adjust_w.perform_applicable_ops(attr=AdjustWeight.ATTR_ATTN_V, model_dict=model_dict, key=key)
                        # apply to_out changes, if needed
                        elif "to_out" in key:
                            if key.strip().endswith("weight"):
                                adjust_w.perform_applicable_ops(attr=AdjustWeight.ATTR_ATTN_OUT_WEIGHT, model_dict=model_dict, key=key)
                            elif key.strip().endswith("bias"):
                                adjust_w.perform_applicable_ops(attr=AdjustWeight.ATTR_ATTN_OUT_BIAS, model_dict=model_dict, key=key)
                else:
                    adjust_w.perform_applicable_ops(attr=AdjustWeight.ATTR_OTHER, model_dict=model_dict, key=key)
    return model_dict


class InjectionParams:
    def __init__(self, unlimited_area_hack: bool=False, apply_mm_groupnorm_hack: bool=True,
                 apply_v2_properly: bool=True) -> None:
        self.full_length = None
        self.unlimited_area_hack = unlimited_area_hack
        self.apply_mm_groupnorm_hack = apply_mm_groupnorm_hack
        self.apply_v2_properly = apply_v2_properly
        self.context_options: ContextOptionsGroup = ContextOptionsGroup.default()
        self.motion_model_settings = AnimateDiffSettings() # Gen1
        self.sub_idxs = None  # value should NOT be included in clone, so it will auto reset
    
    def set_noise_extra_args(self, noise_extra_args: dict):
        noise_extra_args["context_options"] = self.context_options.clone()

    def set_context(self, context_options: ContextOptionsGroup):
        self.context_options = context_options.clone() if context_options else ContextOptionsGroup.default()
    
    def is_using_sliding_context(self) -> bool:
        return self.context_options.context_length is not None

    def set_motion_model_settings(self, motion_model_settings: AnimateDiffSettings): # Gen1
        if motion_model_settings is None:
            self.motion_model_settings = AnimateDiffSettings()
        else:
            self.motion_model_settings = motion_model_settings

    def reset_context(self):
        self.context_options = ContextOptionsGroup.default()
    
    def clone(self) -> 'InjectionParams':
        new_params = InjectionParams(
            self.unlimited_area_hack, self.apply_mm_groupnorm_hack, apply_v2_properly=self.apply_v2_properly,
            )
        new_params.full_length = self.full_length
        new_params.set_context(self.context_options)
        new_params.set_motion_model_settings(self.motion_model_settings) # Gen1
        return new_params
    
    def on_model_patcher_clone(self):
        return self.clone()