File size: 73,930 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
import math
from typing import Iterable, Tuple, Union, TYPE_CHECKING
import re
from dataclasses import dataclass
from collections.abc import Iterable as IterColl

import torch
from einops import rearrange, repeat
from torch import Tensor, nn

from comfy.ldm.modules.attention import FeedForward, SpatialTransformer
from comfy.model_patcher import ModelPatcher
from comfy.model_base import BaseModel
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
from comfy.ldm.modules.diffusionmodules import openaimodel
from comfy.ldm.modules.diffusionmodules.openaimodel import SpatialTransformer
from comfy.controlnet import broadcast_image_to
from comfy.utils import repeat_to_batch_size
import comfy.ops
import comfy.model_management

from .context import ContextFuseMethod, ContextOptions, get_context_weights, get_context_windows
from .adapter_animatelcm_i2v import AdapterEmbed
if TYPE_CHECKING:  # avoids circular import
    from .adapter_cameractrl import CameraPoseEncoder
from .adapter_fancyvideo import FancyVideoCondEmbedding, FancyVideoKeys, initialize_weights_to_zero
from .utils_motion import (CrossAttentionMM, MotionCompatibilityError, DummyNNModule, extend_to_batch_size, extend_list_to_batch_size,
                           prepare_mask_batch, get_combined_multival)
from .utils_model import BetaSchedules, ModelTypeSD
from .logger import logger


def zero_module(module):
    # Zero out the parameters of a module and return it.
    for p in module.parameters():
        p.detach().zero_()
    return module


class AnimateDiffFormat:
    ANIMATEDIFF = "AnimateDiff"
    HOTSHOTXL = "HotshotXL"
    ANIMATELCM = "AnimateLCM"
    PIA = "PIA"
    FANCYVIDEO = "FancyVideo"

    _LIST = [ANIMATEDIFF, HOTSHOTXL, ANIMATELCM, PIA, FANCYVIDEO]


class AnimateDiffVersion:
    V1 = "v1"
    V2 = "v2"
    V3 = "v3"

    _LIST = [V1, V2, V3]


class AnimateDiffInfo:
    def __init__(self, sd_type: str, mm_format: str, mm_version: str, mm_name: str):
        self.sd_type = sd_type
        self.mm_format = mm_format
        self.mm_version = mm_version
        self.mm_name = mm_name
    
    def get_string(self):
        return f"{self.mm_name}:{self.mm_version}:{self.mm_format}:{self.sd_type}"


#######################
# Facilitate Per-Block Effect and Scale Control
class PerAttn:
    def __init__(self, attn_idx: Union[int, None], scale: Union[float, Tensor, None]):
        self.attn_idx = attn_idx
        self.scale = scale
    
    def matches(self, id: int):
        if self.attn_idx is None:
            return True
        return self.attn_idx == id


class PerBlockId:
    def __init__(self, block_type: str, block_idx: Union[int, None]=None, module_idx: Union[int, None]=None):
        self.block_type = block_type
        self.block_idx = block_idx
        self.module_idx = module_idx
    
    def matches(self, other: 'PerBlockId') -> bool:
        # block_type
        if other.block_type != self.block_type:
            return False
        # block_idx
        if other.block_idx is None:
            return True
        elif other.block_idx != self.block_idx:
            return False
        # module_idx
        if other.module_idx is None:
            return True
        return other.module_idx == self.module_idx
    
    def __str__(self):
        return f"PerBlockId({self.block_type},{self.block_idx},{self.module_idx})"


class PerBlock:
    def __init__(self, id: PerBlockId, effect: Union[float, Tensor, None]=None,
                 scales: Union[list[Union[float, Tensor, None]], None]=None):
        self.id = id
        self.effect = effect
        self.scales = scales

    def matches(self, id: PerBlockId):
        return self.id.matches(id)
    

@dataclass
class AllPerBlocks:
    per_block_list: list[PerBlock]
    sd_type: Union[str, None] = None
#----------------------
#######################

def is_hotshotxl(mm_state_dict: dict[str, Tensor]) -> bool:
    # use pos_encoder naming to determine if hotshotxl model
    for key in mm_state_dict.keys():
        if key.endswith("pos_encoder.positional_encoding"):
            return True
    return False


def is_animatelcm(mm_state_dict: dict[str, Tensor]) -> bool:
    # use lack of ANY pos_encoder keys to determine if animatelcm model
    for key in mm_state_dict.keys():
        if "pos_encoder" in key:
            return False
    return True

def is_hellomeme(mm_state_dict: dict[str, Tensor]) -> bool:
    for key in mm_state_dict.keys():
        if "pos_embed" in key:
            return True
    return False

def has_conv_in(mm_state_dict: dict[str, Tensor]) -> bool:
    # check if conv_in.weight and .bias are present
    if "conv_in.weight" in mm_state_dict and "conv_in.bias" in mm_state_dict:
        return True
    return False


def is_fancyvideo(mm_state_dict: dict[str, Tensor]) -> bool:
    if 'FancyVideo' in mm_state_dict:
        return True
    return False


def get_down_block_max(mm_state_dict: dict[str, Tensor]) -> int:
    return get_block_max(mm_state_dict, "down_blocks")

def get_up_block_max(mm_state_dict: dict[str, Tensor]) -> int:
    return get_block_max(mm_state_dict, "up_blocks")

def get_block_max(mm_state_dict: dict[str, Tensor], block_name: str) -> int:
    # keep track of biggest down_block count in module
    biggest_block = -1
    for key in mm_state_dict.keys():
        if block_name in key:
            try:
                block_int = key.split(".")[1]
                block_num = int(block_int)
                if block_num > biggest_block:
                    biggest_block = block_num
            except ValueError:
                pass
    return biggest_block

def has_mid_block(mm_state_dict: dict[str, Tensor]):
    # check if keys contain mid_block
    for key in mm_state_dict.keys():
        if key.startswith("mid_block."):
            return True
    return False

_regex_attention_blocks_num = re.compile(r'\.attention_blocks\.(\d+)\.')
def get_attention_block_max_len(mm_state_dict: dict[str, Tensor]):
    biggest_attention = -1
    for key in mm_state_dict.keys():
        found = _regex_attention_blocks_num.search(key)
        if found:
            attention_num = int(found.group(1))
            if attention_num > biggest_attention:
                biggest_attention = attention_num
    return biggest_attention + 1


def get_position_encoding_max_len(mm_state_dict: dict[str, Tensor], mm_name: str, mm_format: str) -> Union[int, None]:
    # use pos_encoder.pe entries to determine max length - [1, {max_length}, {320|640|1280}]
    for key in mm_state_dict.keys():
        if key.endswith("pos_encoder.pe"):
            return mm_state_dict[key].size(1) # get middle dim
    # AnimateLCM models should have no pos_encoder entries, and assumed to be 64
    if mm_format == AnimateDiffFormat.ANIMATELCM:
        return 64
    raise MotionCompatibilityError(f"No pos_encoder.pe found in mm_state_dict - {mm_name} is not a valid AnimateDiff motion module!")


_regex_hotshotxl_module_num = re.compile(r'temporal_attentions\.(\d+)\.')
def find_hotshot_module_num(key: str) -> Union[int, None]:
    found = _regex_hotshotxl_module_num.search(key)
    if found:
        return int(found.group(1))
    return None


_regex_hellomeme_module_num = re.compile(r'motion_modules\.(\d+)\.')
def find_hellomeme_module_num(key: str) -> Union[int, None]:
    found = _regex_hellomeme_module_num.search(key)
    if found:
        return int(found.group(1))
    return None


def has_img_encoder(mm_state_dict: dict[str, Tensor]):
    for key in mm_state_dict.keys():
        if key.startswith("img_encoder."):
            return True
    return False


def has_fps_embedding(mm_state_dict: dict[str, Tensor]):
    for key in mm_state_dict.keys():
        if key.startswith("fps_embedding."):
            return True
    return False


def has_motion_embedding(mm_state_dict: dict[str, Tensor]):
    for key in mm_state_dict.keys():
        if key.startswith("motion_embedding."):
            return True
    return False


def normalize_ad_state_dict(mm_state_dict: dict[str, Tensor], mm_name: str) -> Tuple[dict[str, Tensor], AnimateDiffInfo]:
    # from pathlib import Path
    # log_name = mm_name.split('\\')[-1]
    # with open(Path(__file__).parent.parent.parent / rf"keys_{log_name}.txt", "w") as afile:
    #     for key, value in mm_state_dict.items():
    #         if key == 'module':
    #             for inkey, invalue in value.items():
    #                 if hasattr(invalue, 'shape'):
    #                     afile.write(f"{inkey}:\t{invalue.shape}\n")
    #                 else:
    #                     afile.write(f"{inkey}:\t{invalue}\n")
    #         elif hasattr(value, 'shape'):
    #             afile.write(f"{key}:\t{value.shape}\n")
    #         else:
    #             afile.write(f"{key}:\t{type(value)}\n")
    # determine what SD model the motion module is intended for
    sd_type: str = None
    down_block_max = get_down_block_max(mm_state_dict)
    if down_block_max == 3:
        sd_type = ModelTypeSD.SD1_5
    elif down_block_max == 2:
        sd_type = ModelTypeSD.SDXL
    else:
        raise ValueError(f"'{mm_name}' is not a valid SD1.5 nor SDXL motion module - contained {down_block_max} downblocks.")
    # determine the model's format
    mm_format = AnimateDiffFormat.ANIMATEDIFF
    if is_hellomeme(mm_state_dict):
        convert_hellomeme_state_dict(mm_state_dict)
    if is_hotshotxl(mm_state_dict):
        mm_format = AnimateDiffFormat.HOTSHOTXL
    if is_animatelcm(mm_state_dict):
        mm_format = AnimateDiffFormat.ANIMATELCM
    if has_conv_in(mm_state_dict):
        mm_format = AnimateDiffFormat.PIA
    if is_fancyvideo(mm_state_dict):
        mm_format = AnimateDiffFormat.FANCYVIDEO
        mm_state_dict.pop("FancyVideo")
    # for AnimateLCM-I2V purposes, check for img_encoder keys
    contains_img_encoder = has_img_encoder(mm_state_dict)
    # remove all non-temporal keys (in case model has extra stuff in it)
    for key in list(mm_state_dict.keys()):
        if "temporal" not in key:
            if mm_format == AnimateDiffFormat.ANIMATELCM and contains_img_encoder and key.startswith("img_encoder."):
                continue
            if mm_format == AnimateDiffFormat.PIA and key.startswith("conv_in."):
                continue
            if mm_format == AnimateDiffFormat.FANCYVIDEO and key in FancyVideoKeys:
                continue
            del mm_state_dict[key]

    # determine the model's version
    mm_version = AnimateDiffVersion.V1
    if has_mid_block(mm_state_dict):
        mm_version = AnimateDiffVersion.V2
    elif sd_type==ModelTypeSD.SD1_5 and get_position_encoding_max_len(mm_state_dict, mm_name, mm_format)==32:
        mm_version = AnimateDiffVersion.V3
    info = AnimateDiffInfo(sd_type=sd_type, mm_format=mm_format, mm_version=mm_version, mm_name=mm_name)
    # convert to AnimateDiff format, if needed
    if mm_format == AnimateDiffFormat.HOTSHOTXL:
        convert_hotshot_state_dict(mm_state_dict)
    # return adjusted mm_state_dict and info
    return mm_state_dict, info


def convert_hotshot_state_dict(mm_state_dict: dict[str, Tensor]):
    # HotshotXL is AD-based architecture applied to SDXL instead of SD1.5
    # By renaming the keys, no code needs to be adapted at all
    ################################
    # reformat temporal_attentions:
    # HSXL: temporal_attentions.#.
    #   AD: motion_modules.#.temporal_transformer.
    # HSXL: pos_encoder.positional_encoding
    #   AD: pos_encoder.pe
    for key in list(mm_state_dict.keys()):
        module_num = find_hotshot_module_num(key)
        if module_num is not None:
            new_key = key.replace(f"temporal_attentions.{module_num}",
                                    f"motion_modules.{module_num}.temporal_transformer", 1)
            new_key = new_key.replace("pos_encoder.positional_encoding", "pos_encoder.pe")
            mm_state_dict[new_key] = mm_state_dict[key]
            del mm_state_dict[key]


def convert_hellomeme_state_dict(mm_state_dict: dict[str, Tensor]):
    # HelloMeme is AD-based architecture
    for key in list(mm_state_dict.keys()):
        module_num = find_hellomeme_module_num(key)
        if module_num is not None:
            # first, add temporal_transformer everywhere as suffix after motion_modules.#.
            new_key = key.replace(f"motion_modules.{module_num}",
                                  f"motion_modules.{module_num}.temporal_transformer")
            if "pos_embed" in new_key:
                new_key1 = new_key.replace("pos_embed.pe", "attention_blocks.0.pos_encoder.pe")
                new_key2 = new_key.replace("pos_embed.pe", "attention_blocks.1.pos_encoder.pe")
                mm_state_dict[new_key1] = mm_state_dict[key].clone()
                mm_state_dict[new_key2] = mm_state_dict[key].clone()
            else:
                if "attn1" in new_key:
                    new_key = new_key.replace("attn1.", "attention_blocks.0.")
                elif "attn2" in new_key:
                    new_key = new_key.replace("attn2.", "attention_blocks.1.")
                elif "norm1" in new_key:
                    new_key = new_key.replace("norm1.", "norms.0.")
                elif "norm2" in new_key:
                    new_key = new_key.replace("norm2.", "norms.1.")
                elif "norm3" in new_key:
                    new_key = new_key.replace("norm3.", "ff_norm.")
                mm_state_dict[new_key] = mm_state_dict[key]
            del mm_state_dict[key]


class InitKwargs:
    OPS = "ops"
    GET_UNET_FUNC = "get_unet_func"
    ATTN_BLOCK_TYPE = "attn_block_type"


class BlockType:
    UP = "up"
    DOWN = "down"
    MID = "mid"


def get_unet_default(wrapper: 'AnimateDiffModel', model: ModelPatcher):
    return model.model.diffusion_model


class AnimateDiffModel(nn.Module):
    def __init__(self, mm_state_dict: dict[str, Tensor], mm_info: AnimateDiffInfo, init_kwargs: dict[str]={}):
        super().__init__()
        self.mm_info = mm_info
        self.down_blocks: list[MotionModule] = None
        self.up_blocks: list[MotionModule] = None
        self.mid_block: Union[MotionModule, None] = None
        self.encoding_max_len = get_position_encoding_max_len(mm_state_dict, mm_info.mm_name, mm_info.mm_format)
        self.has_position_encoding = self.encoding_max_len is not None
        self.attn_len = get_attention_block_max_len(mm_state_dict)
        self.attn_type = init_kwargs.get(InitKwargs.ATTN_BLOCK_TYPE, "Temporal_Self")
        self.attn_block_types = tuple([self.attn_type] * self.attn_len)
        # determine ops to use (to support fp8 properly)
        self.ops = init_kwargs.get(InitKwargs.OPS, None)
        if self.ops is None:
            if comfy.model_management.unet_manual_cast(comfy.model_management.unet_dtype(), comfy.model_management.get_torch_device()) is None:
                self.ops = comfy.ops.disable_weight_init
            else:
                self.ops = comfy.ops.manual_cast
        # SDXL has 3 up/down blocks, SD1.5 has 4 up/down blocks
        if mm_info.sd_type == ModelTypeSD.SDXL:
            layer_channels = (320, 640, 1280)
        else:
            layer_channels = (320, 640, 1280, 1280)
        self.layer_channels = layer_channels
        self.middle_channel = 1280
        # fill out down/up blocks and middle block, if present
        if get_down_block_max(mm_state_dict) > -1:
            self.down_blocks = nn.ModuleList([])
            for idx, c in enumerate(layer_channels):
                self.down_blocks.append(MotionModule(c, temporal_pe=self.has_position_encoding,
                                                    temporal_pe_max_len=self.encoding_max_len, block_type=BlockType.DOWN, block_idx=idx,
                                                    attention_block_types=self.attn_block_types, ops=self.ops))
        if get_up_block_max(mm_state_dict) > -1:
            self.up_blocks = nn.ModuleList([])
            for idx, c in enumerate(list(reversed(layer_channels))):
                self.up_blocks.append(MotionModule(c, temporal_pe=self.has_position_encoding,
                                                temporal_pe_max_len=self.encoding_max_len, block_type=BlockType.UP, block_idx=idx,
                                                attention_block_types=self.attn_block_types, ops=self.ops))
        if has_mid_block(mm_state_dict):
            self.mid_block = MotionModule(self.middle_channel, temporal_pe=self.has_position_encoding,
                                          temporal_pe_max_len=self.encoding_max_len, block_type=BlockType.MID,
                                          attention_block_types=self.attn_block_types, ops=self.ops)
        self.AD_video_length: int = 24
        self.effect_model = 1.0
        self.effect_per_block_list = None
        # AnimateLCM-I2V stuff - create AdapterEmbed if keys present for it
        self.img_encoder: AdapterEmbed = None
        if has_img_encoder(mm_state_dict):
            self.init_img_encoder()
        # CameraCtrl stuff
        self.camera_encoder: 'CameraPoseEncoder' = None
        # PIA/FancyVideo stuff - create conv_in if keys are present for it
        self.conv_in: comfy.ops.disable_weight_init.Conv2d = None
        self.orig_conv_in: comfy.ops.disable_weight_init.Conv2d = None
        if has_conv_in(mm_state_dict):
            self.init_conv_in(mm_state_dict)
        # FancyVideo fps_embedding and motion_embedding
        self.fps_embedding: FancyVideoCondEmbedding = None
        self.motion_embedding: FancyVideoCondEmbedding = None
        if has_fps_embedding(mm_state_dict):
            self.init_fps_embedding(mm_state_dict)
        if has_motion_embedding(mm_state_dict):
            self.init_motion_embedding(mm_state_dict)
        # get_unet_func initialization
        self.get_unet_func = init_kwargs.get(InitKwargs.GET_UNET_FUNC, get_unet_default)

    def init_img_encoder(self):
        del self.img_encoder
        self.img_encoder = AdapterEmbed(cin=4, channels=self.layer_channels, nums_rb=2, ksize=1, sk=True, use_conv=False, ops=self.ops)

    def set_camera_encoder(self, camera_encoder: 'CameraPoseEncoder'):
        del self.camera_encoder
        self.camera_encoder = camera_encoder

    def init_conv_in(self, mm_state_dict: dict[str, Tensor]):
        '''
        Used for PIA/FancyVideo
        '''
        del self.conv_in
        # hardcoded values, for now
        # dim=2, in_channels=9, model_channels=320, kernel=3, padding=1,
        # dtype=comfy.model_management.unet_dtype(), device=offload_device
        in_channels = mm_state_dict["conv_in.weight"].size(1) # expected to be 9
        model_channels = mm_state_dict["conv_in.weight"].size(0) # expected to be 320
        # create conv_in with proper params
        self.conv_in = self.ops.conv_nd(2, in_channels, model_channels, 3, padding=1,
                                        dtype=comfy.model_management.unet_dtype(), device=comfy.model_management.unet_offload_device())

    def init_fps_embedding(self, mm_state_dict: dict[str, Tensor]):
        '''
        Used for FancyVideo
        '''
        del self.fps_embedding
        in_channels = mm_state_dict["fps_embedding.linear.weight"].size(1) # expected to be 320
        cond_embed_dim = mm_state_dict["fps_embedding.linear.weight"].size(0) # expected to be 1280
        self.fps_embedding = FancyVideoCondEmbedding(in_channels=in_channels, cond_embed_dim=cond_embed_dim)
        self.fps_embedding.apply(initialize_weights_to_zero)

    def init_motion_embedding(self, mm_state_dict: dict[str, Tensor]):
        '''
        Used for FancyVideo
        '''
        del self.motion_embedding
        in_channels = mm_state_dict["motion_embedding.linear.weight"].size(1) # expected to be 320
        cond_embed_dim = mm_state_dict["motion_embedding.linear.weight"].size(0) # expected to be 1280
        self.motion_embedding = FancyVideoCondEmbedding(in_channels=in_channels, cond_embed_dim=cond_embed_dim)
        self.motion_embedding.apply(initialize_weights_to_zero)

    def get_fancyvideo_emb_patches(self, dtype, device, fps=25, motion_score=3.0):
        patches = []
        if self.fps_embedding is not None:
            if fps is not None:
                def fps_emb_patch(emb: Tensor, model_channels: int, transformer_options: dict[str]):
                    nonlocal fps
                    if fps is None:
                        return emb
                    fps = torch.tensor(fps).to(dtype=emb.dtype, device=emb.device)
                    fps = fps.expand(emb.shape[0])
                    fps_emb = timestep_embedding(fps, model_channels, repeat_only=False).to(dtype=emb.dtype)
                    fps_emb = self.fps_embedding(fps_emb)
                    return emb + fps_emb
                patches.append(fps_emb_patch)
        if self.motion_embedding is not None:
            if motion_score is not None:
                def motion_emb_patch(emb: Tensor, model_channels: int, transformer_options: dict[str]):
                    nonlocal motion_score
                    if motion_score is None:
                        return emb
                    motion_score = torch.tensor(motion_score).to(dtype=emb.dtype, device=emb.device)
                    motion_score = motion_score.expand(emb.shape[0])
                    motion_emb = timestep_embedding(motion_score, model_channels, repeat_only=False).to(dtype=emb.dtype)
                    motion_emb = self.motion_embedding(motion_emb)
                    return emb + motion_emb
                patches.append(motion_emb_patch)
        return patches

    def get_device_debug(self):
        return self.down_blocks[0].motion_modules[0].temporal_transformer.proj_in.weight.device

    def is_length_valid_for_encoding_max_len(self, length: int):
        if self.encoding_max_len is None:
            return True
        return length <= self.encoding_max_len

    def get_best_beta_schedule(self, log=False) -> str:
        to_return = None
        if self.mm_info.sd_type == ModelTypeSD.SD1_5:
            if self.mm_info.mm_format == AnimateDiffFormat.ANIMATELCM:
                to_return = BetaSchedules.LCM  # while LCM_100 is the intended schedule, I find LCM to have much less flicker
            else:
                to_return = BetaSchedules.SQRT_LINEAR
        elif self.mm_info.sd_type == ModelTypeSD.SDXL:
            if self.mm_info.mm_format == AnimateDiffFormat.HOTSHOTXL:
                to_return = BetaSchedules.LINEAR
            else:
                to_return = BetaSchedules.LINEAR_ADXL
        if to_return is not None:
            if log: logger.info(f"[Autoselect]: '{to_return}' beta_schedule for {self.mm_info.get_string()}")
        else:
            to_return = BetaSchedules.USE_EXISTING
            if log: logger.info(f"[Autoselect]: could not find beta_schedule for {self.mm_info.get_string()}, defaulting to '{to_return}'")
        return to_return

    def cleanup(self):
        self._reset_sub_idxs()
        self._reset_scale()
        self._reset_temp_vars()
        if self.img_encoder is not None:
            self.img_encoder.cleanup()

    def inject(self, model: ModelPatcher):
        unet: openaimodel.UNetModel = self.get_unet_func(self, model)
        # inject input (down) blocks
        # SD15 mm contains 4 downblocks, each with 2 TemporalTransformers - 8 in total
        # SDXL mm contains 3 downblocks, each with 2 TemporalTransformers - 6 in total
        if self.down_blocks is not None:
            self._inject(unet.input_blocks, self.down_blocks)
        # inject output (up) blocks
        # SD15 mm contains 4 upblocks, each with 3 TemporalTransformers - 12 in total
        # SDXL mm contains 3 upblocks, each with 3 TemporalTransformers - 9 in total
        if self.up_blocks is not None:
            self._inject(unet.output_blocks, self.up_blocks)
        # inject mid block, if needed (encapsulate in list to make structure compatible)
        if self.mid_block is not None:
            self._inject([unet.middle_block], [self.mid_block])
        del unet

    def _inject(self, unet_blocks: nn.ModuleList, mm_blocks: nn.ModuleList):
        # Rules for injection:
        # For each component list in a unet block:
        #     if SpatialTransformer exists in list, place next block after last occurrence
        #     elif ResBlock exists in list, place next block after first occurrence
        #     else don't place block
        injection_count = 0
        unet_idx = 0
        # details about blocks passed in
        per_block = len(mm_blocks[0].motion_modules)
        injection_goal = len(mm_blocks) * per_block
        # only stop injecting when modules exhausted
        while injection_count < injection_goal:
            # figure out which VanillaTemporalModule from mm to inject
            mm_blk_idx, mm_vtm_idx = injection_count // per_block, injection_count % per_block
            # figure out layout of unet block components
            st_idx = -1 # SpatialTransformer index
            res_idx = -1 # first ResBlock index
            # first, figure out indeces of relevant blocks
            for idx, component in enumerate(unet_blocks[unet_idx]):
                if type(component) == SpatialTransformer:
                    st_idx = idx
                elif type(component).__name__ == "ResBlock" and res_idx < 0:
                    res_idx = idx
            # if SpatialTransformer exists, inject right after
            if st_idx >= 0:
                #logger.info(f"AD: injecting after ST({st_idx})")
                unet_blocks[unet_idx].insert(st_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
                injection_count += 1
            # otherwise, if only ResBlock exists, inject right after
            elif res_idx >= 0:
                #logger.info(f"AD: injecting after Res({res_idx})")
                unet_blocks[unet_idx].insert(res_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
                injection_count += 1
            # increment unet_idx
            unet_idx += 1

    def eject(self, model: ModelPatcher):
        unet: openaimodel.UNetModel = self.get_unet_func(self, model)
        # remove from input blocks (downblocks)
        if hasattr(unet, "input_blocks"):
            self._eject(unet.input_blocks)
        # remove from output blocks (upblocks)
        if hasattr(unet, "output_blocks"):
            self._eject(unet.output_blocks)
        # remove from middle block (encapsulate in list to make compatible)
        if hasattr(unet, "middle_block"):
            self._eject([unet.middle_block])
        del unet

    def _eject(self, unet_blocks: nn.ModuleList):
        # eject all VanillaTemporalModule objects from all blocks
        for block in unet_blocks:
            idx_to_pop = []
            for idx, component in enumerate(block):
                if type(component) == VanillaTemporalModule:
                    idx_to_pop.append(idx)
            # pop in backwards order, as to not disturb what the indeces refer to
            for idx in sorted(idx_to_pop, reverse=True):
                block.pop(idx)

    def inject_unet_conv_in_pia_fancyvideo(self, model: BaseModel):
        if self.conv_in is None:
            return
        # TODO: make sure works with lowvram
        # expected conv_in is in the first input block, and is the first module
        self.orig_conv_in = model.diffusion_model.input_blocks[0][0]

        present_state_dict: dict[str, Tensor] = self.orig_conv_in.state_dict()
        new_state_dict: dict[str, Tensor] = self.conv_in.state_dict()
        # bias stays the same, but weight needs to inherit first in_channels from model
        combined_state_dict = {}
        combined_state_dict["bias"] = present_state_dict["bias"]
        combined_state_dict["weight"] = torch.cat([present_state_dict["weight"],
                                                   new_state_dict["weight"][:, 4:, :, :].to(dtype=present_state_dict["weight"].dtype,
                                                                                            device=present_state_dict["weight"].device)], dim=1)
        # create combined_conv_in with proper params
        in_channels = new_state_dict["weight"].size(1) # expected to be 9
        model_channels = present_state_dict["weight"].size(0) # expected to be 320
        combined_conv_in = self.ops.conv_nd(2, in_channels, model_channels, 3, padding=1,
                                        dtype=present_state_dict["weight"].dtype, device=present_state_dict["weight"].device)
        combined_conv_in.load_state_dict(combined_state_dict)
        # now can apply combined_conv_in to unet block
        model.diffusion_model.input_blocks[0][0] = combined_conv_in
    
    def restore_unet_conv_in_pia_fancyvideo(self, model: BaseModel):
        if self.orig_conv_in is not None:
            model.diffusion_model.input_blocks[0][0] = self.orig_conv_in.to(model.diffusion_model.input_blocks[0][0].weight.device)
            self.orig_conv_in = None

    def set_video_length(self, video_length: int, full_length: int):
        self.AD_video_length = video_length
        if self.down_blocks is not None:
            for block in self.down_blocks:
                block.set_video_length(video_length, full_length)
        if self.up_blocks is not None:
            for block in self.up_blocks:
                block.set_video_length(video_length, full_length)
        if self.mid_block is not None:
            self.mid_block.set_video_length(video_length, full_length)
    
    def set_scale(self, scale: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None):
        if self.down_blocks is not None:
            for block in self.down_blocks:
                block.set_scale(scale, per_block_list)
        if self.up_blocks is not None:
            for block in self.up_blocks:
                block.set_scale(scale, per_block_list)
        if self.mid_block is not None:
            self.mid_block.set_scale(scale, per_block_list)
    
    def set_effect(self, multival: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None):
        # keep track of if model is in effect
        if multival is None:
            self.effect_model = 1.0
        else:
            self.effect_model = multival
        self.effect_per_block_list = per_block_list
        # pass down effect multival to all blocks
        if self.down_blocks is not None:
            for block in self.down_blocks:
                block.set_effect(multival, per_block_list)
        if self.up_blocks is not None:
            for block in self.up_blocks:
                block.set_effect(multival, per_block_list)
        if self.mid_block is not None:
            self.mid_block.set_effect(multival, per_block_list)

    def is_in_effect(self):
        if type(self.effect_model) == Tensor:
            return True
        return not math.isclose(self.effect_model, 0.0)

    def set_cameractrl_effect(self, multival: Union[float, Tensor]):
        # cameractrl should only impact down and up blocks
        if self.down_blocks is not None:
            for block in self.down_blocks:
                block.set_cameractrl_effect(multival)
        if self.up_blocks is not None:
            for block in self.up_blocks:
                block.set_cameractrl_effect(multival)

    def set_sub_idxs(self, sub_idxs: list[int]):
        if self.down_blocks is not None:
            for block in self.down_blocks:
                block.set_sub_idxs(sub_idxs)
        if self.up_blocks is not None:
            for block in self.up_blocks:
                block.set_sub_idxs(sub_idxs)
        if self.mid_block is not None:
            self.mid_block.set_sub_idxs(sub_idxs)

    def set_view_options(self, view_options: ContextOptions):
        if self.down_blocks is not None:
            for block in self.down_blocks:
                block.set_view_options(view_options)
        if self.up_blocks is not None:
            for block in self.up_blocks:
                block.set_view_options(view_options)
        if self.mid_block is not None:
            self.mid_block.set_view_options(view_options)

    def set_img_features(self, img_features: list[Tensor], apply_ref_when_disabled=False):
        # img_features should only impact downblocks
        if self.down_blocks is not None:
            for block in self.down_blocks:
                block.set_img_features(img_features=img_features, apply_ref_when_disabled=apply_ref_when_disabled)

    def set_camera_features(self, camera_features: list[Tensor]):
        # camera features should only impact down and up blocks
        if self.down_blocks is not None:
            for block in self.down_blocks:
                block.set_camera_features(camera_features=camera_features)
        if self.up_blocks is not None:
            for block in self.up_blocks:
                block.set_camera_features(camera_features=list(reversed(camera_features)))
    
    def _reset_temp_vars(self):
        if self.down_blocks is not None:
            for block in self.down_blocks:
                block.reset_temp_vars()
        if self.up_blocks is not None:
            for block in self.up_blocks:
                block.reset_temp_vars()
        if self.mid_block is not None:
            self.mid_block.reset_temp_vars()

    def _reset_scale(self):
        self.set_scale(None)

    def _reset_sub_idxs(self):
        self.set_sub_idxs(None)


class MotionModule(nn.Module):
    def __init__(self,
            in_channels,
            temporal_pe=True,
            temporal_pe_max_len=24,
            block_type: str=BlockType.DOWN,
            block_idx: int=0,
            attention_block_types=("Temporal_Self", "Temporal_Self"),
            ops=comfy.ops.disable_weight_init
        ):
        super().__init__()
        if block_type == BlockType.MID:
            # mid blocks contain only a single VanillaTemporalModule
            self.motion_modules: list[VanillaTemporalModule] = nn.ModuleList([get_motion_module(in_channels, block_type, block_idx, module_idx=0, attention_block_types=attention_block_types, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops)])
        else:
            # down blocks contain two VanillaTemporalModules
            self.motion_modules: list[VanillaTemporalModule] = nn.ModuleList(
                [
                    get_motion_module(in_channels, block_type, block_idx, module_idx=0, attention_block_types=attention_block_types, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops),
                    get_motion_module(in_channels, block_type, block_idx, module_idx=1, attention_block_types=attention_block_types, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops)
                ]
            )
            # up blocks contain one additional VanillaTemporalModule
            if block_type == BlockType.UP: 
                self.motion_modules.append(get_motion_module(in_channels, block_type, block_idx, module_idx=2, attention_block_types=attention_block_types, temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops))
    
    def set_video_length(self, video_length: int, full_length: int):
        for motion_module in self.motion_modules:
            motion_module.set_video_length(video_length, full_length)
    
    def set_scale(self, scale: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None):
        for motion_module in self.motion_modules:
            motion_module.set_scale(scale, per_block_list)

    def set_effect(self, multival: Union[float, Tensor], per_block_list: Union[list[PerBlock], None]=None):
        for motion_module in self.motion_modules:
            motion_module.set_effect(multival, per_block_list)
    
    def set_cameractrl_effect(self, multival: Union[float, Tensor]):
        for motion_module in self.motion_modules:
            motion_module.set_cameractrl_effect(multival)
    
    def set_sub_idxs(self, sub_idxs: list[int]):
        for motion_module in self.motion_modules:
            motion_module.set_sub_idxs(sub_idxs)

    def set_view_options(self, view_options: ContextOptions):
        for motion_module in self.motion_modules:
            motion_module.set_view_options(view_options=view_options)

    def set_img_features(self, img_features: list[Tensor], apply_ref_when_disabled=False):
        for motion_module in self.motion_modules:
            motion_module.set_img_features(img_features=img_features, apply_ref_when_disabled=apply_ref_when_disabled)

    def set_camera_features(self, camera_features: list[Tensor]):
        for idx, motion_module in enumerate(self.motion_modules):
            #if idx == 0:
            motion_module.set_camera_features(camera_features=camera_features)

    def reset_temp_vars(self):
        for motion_module in self.motion_modules:
            motion_module.reset_temp_vars()


def get_motion_module(in_channels, block_type: str, block_idx: int, module_idx: int,
                      attention_block_types: list[str],
                      temporal_pe, temporal_pe_max_len, ops=comfy.ops.disable_weight_init):
    return VanillaTemporalModule(in_channels=in_channels, block_type=block_type, block_idx=block_idx, module_idx=module_idx,
                                 attention_block_types=attention_block_types,
                                 temporal_pe=temporal_pe, temporal_pe_max_len=temporal_pe_max_len, ops=ops)


class VanillaTemporalModule(nn.Module):
    def __init__(
        self,
        in_channels,
        block_type: str,
        block_idx: int,
        module_idx: int,
        num_attention_heads=8,
        num_transformer_block=1,
        attention_block_types=("Temporal_Self", "Temporal_Self"),
        cross_frame_attention_mode=None,
        temporal_pe=True,
        temporal_pe_max_len=24,
        temporal_attention_dim_div=1,
        zero_initialize=True,
        ops=comfy.ops.disable_weight_init,
    ):
        super().__init__()

        self.video_length = 16
        self.full_length = 16
        self.sub_idxs = None
        self.view_options = None
        # keep track of module's position in unet
        self.block_type = block_type
        self.block_idx = block_idx
        self.module_idx = module_idx
        self.id = PerBlockId(block_type=block_type, block_idx=block_idx, module_idx=module_idx)
        # effect vars
        self.effect = None
        self.temp_effect_mask: Tensor = None
        self.prev_input_tensor_batch = 0
        # AnimateLCM-I2V vars
        self.img_features: list[Tensor] = None
        self.apply_ref_when_disabled = False
        # CameraCtrl vars
        self.camera_features: list[Tensor] = None

        self.temporal_transformer = TemporalTransformer3DModel(
            in_channels=in_channels,
            num_attention_heads=num_attention_heads,
            attention_head_dim=in_channels
            // num_attention_heads
            // temporal_attention_dim_div,
            num_layers=num_transformer_block,
            attention_block_types=attention_block_types,
            cross_frame_attention_mode=cross_frame_attention_mode,
            temporal_pe=temporal_pe,
            temporal_pe_max_len=temporal_pe_max_len,
            block_id=self.id,
            ops=ops
        )

        if zero_initialize:
            self.temporal_transformer.proj_out = zero_module(
                self.temporal_transformer.proj_out
            )

    def set_video_length(self, video_length: int, full_length: int):
        self.video_length = video_length
        self.full_length = full_length
        self.temporal_transformer.set_video_length(video_length, full_length)

    def set_scale(self, scale: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None):
        self.temporal_transformer.set_scale(scale, per_block_list)

    def set_effect(self, multival: Union[float, Tensor], per_block_list: Union[list[PerBlock], None]=None):
        if per_block_list is not None:
            for per_block in per_block_list:
                if self.id.matches(per_block.id) and per_block.effect is not None:
                    multival = get_combined_multival(multival, per_block.effect)
                    #logger.info(f"block_type: {self.block_type}, block_idx: {self.block_idx}, module_idx: {self.module_idx}")
                    break
        if type(multival) == Tensor:
            self.effect = multival
        elif multival is not None and math.isclose(multival, 1.0):
            self.effect = None
        else:
            self.effect = multival
        self.temp_effect_mask = None
    
    def set_cameractrl_effect(self, multival: Union[float, Tensor, None]):
        if type(multival) == Tensor:
            pass
        elif multival is None:
            multival = 1.0
        elif multival is not None and math.isclose(multival, 1.0):
            multival = 1.0
        self.temporal_transformer.set_cameractrl_effect(multival)
        

    def set_sub_idxs(self, sub_idxs: list[int]):
        self.sub_idxs = sub_idxs
        self.temporal_transformer.set_sub_idxs(sub_idxs)

    def set_view_options(self, view_options: ContextOptions):
        self.view_options = view_options

    def set_img_features(self, img_features: list[Tensor], apply_ref_when_disabled=False):
        del self.img_features
        self.img_features = img_features
        self.apply_ref_when_disabled = apply_ref_when_disabled

    def set_camera_features(self, camera_features: list[Tensor]):
        del self.camera_features
        self.camera_features = camera_features

    def reset_temp_vars(self):
        self.set_effect(None)
        self.set_view_options(None)
        self.set_img_features(None)
        self.set_camera_features(None)
        self.temporal_transformer.reset_temp_vars()

    def get_effect_mask(self, input_tensor: Tensor):
        batch, channel, height, width = input_tensor.shape
        batched_number = batch // self.video_length
        full_batched_idxs = list(range(self.video_length))*batched_number
        # if there is a cached temp_effect_mask and it is valid for current input, return it
        if batch == self.prev_input_tensor_batch and self.temp_effect_mask is not None:
            if self.sub_idxs is not None:
                return self.temp_effect_mask[self.sub_idxs*batched_number]
            return self.temp_effect_mask[full_batched_idxs]
        # clear any existing mask
        del self.temp_effect_mask
        self.temp_effect_mask = None
        # recalculate temp mask
        self.prev_input_tensor_batch = batch
        # make sure mask matches expected dimensions
        mask = prepare_mask_batch(self.effect, shape=(self.full_length, 1, height, width))
        # make sure mask is as long as full_length - clone last element of list if too short
        self.temp_effect_mask = extend_to_batch_size(mask, self.full_length).to(
            dtype=input_tensor.dtype, device=input_tensor.device)
        # return finalized mask
        if self.sub_idxs is not None:
            return self.temp_effect_mask[self.sub_idxs*batched_number]
        return self.temp_effect_mask[full_batched_idxs]

    def should_handle_img_features(self):
        return self.img_features is not None and self.block_type == BlockType.DOWN and self.module_idx == 1

    def should_handle_camera_features(self):
        return self.camera_features is not None and self.block_type != BlockType.MID# and self.module_idx == 0

    def forward(self, input_tensor: Tensor, encoder_hidden_states=None, attention_mask=None, transformer_options=None):
        #logger.info(f"block_type: {self.block_type}, block_idx: {self.block_idx}, module_idx: {self.module_idx}")
        mm_kwargs = None
        if self.should_handle_camera_features():
            mm_kwargs = {"camera_feature": self.camera_features[self.block_idx]}
        if self.effect is None:
            # do AnimateLCM-I2V stuff if needed
            if self.should_handle_img_features():
                input_tensor += self.img_features[self.block_idx]
            return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask, self.view_options, mm_kwargs, transformer_options)
        # return weighted average of input_tensor and AD output
        if type(self.effect) != Tensor:
            effect = self.effect
            # do nothing if effect is 0
            if math.isclose(effect, 0.0):
                # do AnimateLCM-I2V stuff if needed
                if self.apply_ref_when_disabled and self.should_handle_img_features():
                    input_tensor += self.img_features[self.block_idx]
                return input_tensor
        else:
            effect = self.get_effect_mask(input_tensor)
        # do AnimateLCM-I2V stuff if needed
        if self.should_handle_img_features():
            return input_tensor*(1.0-effect) + self.temporal_transformer(input_tensor+self.img_features[self.block_idx], encoder_hidden_states, attention_mask, self.view_options, mm_kwargs, transformer_options)*effect
        return input_tensor*(1.0-effect) + self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask, self.view_options, mm_kwargs, transformer_options)*effect


class TemporalTransformer3DModel(nn.Module):
    def __init__(
        self,
        in_channels,
        num_attention_heads,
        attention_head_dim,
        num_layers,
        attention_block_types=(
            "Temporal_Self",
            "Temporal_Self",
        ),
        dropout=0.0,
        norm_num_groups=32,
        cross_attention_dim=768,
        activation_fn="geglu",
        attention_bias=False,
        upcast_attention=False,
        cross_frame_attention_mode=None,
        temporal_pe=False,
        temporal_pe_max_len=24,
        block_id: PerBlockId=None,
        ops=comfy.ops.disable_weight_init,
    ):
        super().__init__()
        self.id = block_id
        self.video_length = 16
        self.full_length = 16
        self.sub_idxs: Union[list[int], None] = None
        self.prev_hidden_states_batch = 0

        # cameractrl stuff
        self.raw_cameractrl_effect: Union[float, Tensor] = None
        self.temp_cameractrl_effect: Union[float, Tensor] = None
        self.prev_cameractrl_hidden_states_batch = 0

        inner_dim = num_attention_heads * attention_head_dim

        self.norm = ops.GroupNorm(
            num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
        )
        self.proj_in = ops.Linear(in_channels, inner_dim)

        self.transformer_blocks: Iterable[TemporalTransformerBlock] = nn.ModuleList(
            [
                TemporalTransformerBlock(
                    dim=inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    attention_block_types=attention_block_types,
                    dropout=dropout,
                    norm_num_groups=norm_num_groups,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    upcast_attention=upcast_attention,
                    cross_frame_attention_mode=cross_frame_attention_mode,
                    temporal_pe=temporal_pe,
                    temporal_pe_max_len=temporal_pe_max_len,
                    ops=ops,
                )
                for d in range(num_layers)
            ]
        )
        self.proj_out = ops.Linear(inner_dim, in_channels)

        self.raw_scale_masks: Union[list[Tensor], None] = [None] * self.get_attention_count()
        self.temp_scale_masks: Union[list[Tensor], None] = [None] * self.get_attention_count()

    def get_attention_count(self):
        if len(self.transformer_blocks) > 0:
            return len(self.transformer_blocks[0].attention_blocks)
        return 0

    def set_video_length(self, video_length: int, full_length: int):
        self.video_length = video_length
        self.full_length = full_length

    def set_scale_multiplier(self, idx: int, multiplier: Union[float, list[float], None]):
        for block in self.transformer_blocks:
            block.set_scale_multiplier(idx, multiplier)

    def set_scale_mask(self, idx: int, mask: Tensor):
        self.raw_scale_masks[idx] = mask
        self.temp_scale_masks[idx] = None

    def set_scale(self, scale: Union[float, Tensor, None], per_block_list: Union[list[PerBlock], None]=None):
        if per_block_list is not None:
            for per_block in per_block_list:
                if self.id.matches(per_block.id) and len(per_block.scales) > 0:
                    scales = []
                    for sub_scale in per_block.scales:
                        scales.append(get_combined_multival(scale, sub_scale))
                    #logger.info(f"scale - block_type: {self.id.block_type}, block_idx: {self.id.block_idx}, module_idx: {self.id.module_idx}")
                    scale = scales
                    break
        
        if type(scale) == Tensor or not isinstance(scale, IterColl):
            scale = [scale]
        scale = extend_list_to_batch_size(scale, self.get_attention_count())
        for idx, sub_scale in enumerate(scale):
            if type(sub_scale) == Tensor:
                self.set_scale_mask(idx, sub_scale)
                self.set_scale_multiplier(idx, None)
            else:
                self.set_scale_mask(idx, None)
                self.set_scale_multiplier(idx, sub_scale)

    def set_cameractrl_effect(self, multival: Union[float, Tensor]):
        self.raw_cameractrl_effect = multival
        self.temp_cameractrl_effect = None

    def set_sub_idxs(self, sub_idxs: list[int]):
        self.sub_idxs = sub_idxs
        for block in self.transformer_blocks:
            block.set_sub_idxs(sub_idxs)

    def reset_temp_vars(self):
        del self.temp_scale_masks
        self.temp_scale_masks = [None] * self.get_attention_count()
        self.prev_hidden_states_batch = 0
        del self.temp_cameractrl_effect
        self.temp_cameractrl_effect = None
        self.prev_cameractrl_hidden_states_batch = 0
        for block in self.transformer_blocks:
            block.reset_temp_vars()

    def get_scale_masks(self, hidden_states: Tensor) -> Union[Tensor, None]:
        masks = []
        prev_mask = None
        prev_idx = 0
        for idx in range(len(self.raw_scale_masks)):
            if prev_mask is self.raw_scale_masks[idx]:
                masks.append(self.temp_scale_masks[prev_idx])
            else:
                masks.append(self.get_scale_mask(idx=idx, hidden_states=hidden_states))
            prev_idx = idx
        return masks

    def get_scale_mask(self, idx: int, hidden_states: Tensor) -> Union[Tensor, None]:
        # if no raw mask, return None
        if self.raw_scale_masks[idx] is None:
            return None
        shape = hidden_states.shape
        batch, channel, height, width = shape
        # if temp mask already calculated, return it
        if self.temp_scale_masks[idx] != None:
            # check if hidden_states batch matches
            if batch == self.prev_hidden_states_batch:
                if self.sub_idxs is not None:
                    return self.temp_scale_masks[idx][:, self.sub_idxs, :]
                return self.temp_scale_masks[idx]
            # if does not match, reset cached temp_scale_mask and recalculate it
            self.temp_scale_masks[idx] = None
        # otherwise, calculate temp mask
        self.prev_hidden_states_batch = batch
        mask = prepare_mask_batch(self.raw_scale_masks[idx], shape=(self.full_length, 1, height, width))
        mask = repeat_to_batch_size(mask, self.full_length)
        # if mask not the same amount length as full length, make it match
        if self.full_length != mask.shape[0]:
            mask = broadcast_image_to(mask, self.full_length, 1)
        # reshape mask to attention K shape (h*w, latent_count, 1)
        batch, channel, height, width = mask.shape
        # first, perform same operations as on hidden_states,
        # turning (b, c, h, w) -> (b, h*w, c)
        mask = mask.permute(0, 2, 3, 1).reshape(batch, height*width, channel)
        # then, make it the same shape as attention's k, (h*w, b, c)
        mask = mask.permute(1, 0, 2)
        # make masks match the expected length of h*w
        batched_number = shape[0] // self.video_length
        if batched_number > 1:
            mask = torch.cat([mask] * batched_number, dim=0)
        # cache mask and set to proper device
        self.temp_scale_masks[idx] = mask
        # move temp_scale_mask to proper dtype + device
        self.temp_scale_masks[idx] = self.temp_scale_masks[idx].to(dtype=hidden_states.dtype, device=hidden_states.device)
        # return subset of masks, if needed
        if self.sub_idxs is not None:
            return self.temp_scale_masks[idx][:, self.sub_idxs, :]
        return self.temp_scale_masks[idx]

    def get_cameractrl_effect(self, hidden_states: Tensor) -> Union[float, Tensor, None]:
        # if no raw camera_Ctrl, return None
        if self.raw_cameractrl_effect is None:
            return 1.0
        # if raw_cameractrl is not a Tensor, return it (should be a float)
        if type(self.raw_cameractrl_effect) != Tensor:
            return self.raw_cameractrl_effect
        shape = hidden_states.shape
        batch, channel, height, width = shape
        # if temp_cameractrl already calculated, return it
        if self.temp_cameractrl_effect != None:
            # check if hidden_states batch matches
            if batch == self.prev_cameractrl_hidden_states_batch:
                if self.sub_idxs is not None:
                    return self.temp_cameractrl_effect[:, self.sub_idxs, :]
                return self.temp_cameractrl_effect
            # if does not match, reset cached temp_cameractrl and recalculate it
            del self.temp_cameractrl_effect
            self.temp_cameractrl_effect = None
        # otherwise, calculate temp_cameractrl
        self.prev_cameractrl_hidden_states_batch = batch
        mask = prepare_mask_batch(self.raw_cameractrl_effect, shape=(self.full_length, 1, height, width))
        mask = repeat_to_batch_size(mask, self.full_length)
        # if mask not the same amount length as full length, make it match
        if self.full_length != mask.shape[0]:
            mask = broadcast_image_to(mask, self.full_length, 1)
        # reshape mask to attention K shape (h*w, latent_count, 1)
        batch, channel, height, width = mask.shape
        # first, perform same operations as on hidden_states,
        # turning (b, c, h, w) -> (b, h*w, c)
        mask = mask.permute(0, 2, 3, 1).reshape(batch, height*width, channel)
        # then, make it the same shape as attention's k, (h*w, b, c)
        mask = mask.permute(1, 0, 2)
        # make masks match the expected length of h*w
        batched_number = shape[0] // self.video_length
        if batched_number > 1:
            mask = torch.cat([mask] * batched_number, dim=0)
        # cache mask and set to proper device
        self.temp_cameractrl_effect = mask
        # move temp_cameractrl to proper dtype + device
        self.temp_cameractrl_effect = self.temp_cameractrl_effect.to(dtype=hidden_states.dtype, device=hidden_states.device)
        # return subset of masks, if needed
        if self.sub_idxs is not None:
            return self.temp_cameractrl_effect[:, self.sub_idxs, :]
        return self.temp_cameractrl_effect

    def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, view_options: ContextOptions=None, mm_kwargs: dict[str]=None, transformer_options=None):
        batch, channel, height, width = hidden_states.shape
        residual = hidden_states
        scale_masks = self.get_scale_masks(hidden_states)
        cameractrl_effect = self.get_cameractrl_effect(hidden_states)
        # add some casts for fp8 purposes - does not affect speed otherwise
        hidden_states = self.norm(hidden_states).to(hidden_states.dtype)
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
            batch, height * width, inner_dim
        )
        hidden_states = self.proj_in(hidden_states).to(hidden_states.dtype)

        # Transformer Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                video_length=self.video_length,
                scale_masks=scale_masks,
                cameractrl_effect=cameractrl_effect,
                view_options=view_options,
                mm_kwargs=mm_kwargs,
                transformer_options=transformer_options,
            )

        # output
        hidden_states = self.proj_out(hidden_states)
        hidden_states = (
            hidden_states.reshape(batch, height, width, inner_dim)
            .permute(0, 3, 1, 2)
            .contiguous()
        )

        output = hidden_states + residual

        return output


class TemporalTransformerBlock(nn.Module):
    def __init__(
        self,
        dim,
        num_attention_heads,
        attention_head_dim,
        attention_block_types=(
            "Temporal_Self",
            "Temporal_Self",
        ),
        dropout=0.0,
        norm_num_groups=32,
        cross_attention_dim=768,
        activation_fn="geglu",
        attention_bias=False,
        upcast_attention=False,
        cross_frame_attention_mode=None,
        temporal_pe=False,
        temporal_pe_max_len=24,
        ops=comfy.ops.disable_weight_init,
    ):
        super().__init__()

        attention_blocks: Iterable[VersatileAttention] = []
        norms = []

        for block_name in attention_block_types:
            attention_blocks.append(
                VersatileAttention(
                    attention_mode=block_name.split("_")[0],
                    context_dim=cross_attention_dim # called context_dim for ComfyUI impl
                    if block_name.endswith("_Cross")
                    else None,
                    query_dim=dim,
                    heads=num_attention_heads,
                    dim_head=attention_head_dim,
                    dropout=dropout,
                    #bias=attention_bias, # remove for Comfy CrossAttention
                    #upcast_attention=upcast_attention, # remove for Comfy CrossAttention
                    cross_frame_attention_mode=cross_frame_attention_mode,
                    temporal_pe=temporal_pe,
                    temporal_pe_max_len=temporal_pe_max_len,
                    ops=ops,
                )
            )
            norms.append(ops.LayerNorm(dim))

        attention_blocks[0].camera_feature_enabled = True
        self.attention_blocks: Iterable[VersatileAttention] = nn.ModuleList(attention_blocks)
        self.norms = nn.ModuleList(norms)

        self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn == "geglu"), operations=ops)
        self.ff_norm = ops.LayerNorm(dim)

    def set_scale_multiplier(self, idx: int, multiplier: Union[float, None]):
        self.attention_blocks[idx].set_scale_multiplier(multiplier)

    def set_sub_idxs(self, sub_idxs: list[int]):
        for block in self.attention_blocks:
            block.set_sub_idxs(sub_idxs)

    def reset_temp_vars(self):
        for block in self.attention_blocks:
            block.reset_temp_vars()

    def forward(
        self,
        hidden_states: Tensor,
        encoder_hidden_states: Tensor=None,
        attention_mask: Tensor=None,
        video_length: int=None,
        scale_masks: list[Tensor]=None,
        cameractrl_effect: Union[float, Tensor] = None,
        view_options: Union[ContextOptions, None]=None,
        mm_kwargs: dict[str]=None,
        transformer_options: dict[str]=None,
    ):
        if scale_masks is None:
            scale_masks = [None] * len(self.attention_blocks)
        # make view_options None if context_length > video_length, or if equal and equal not allowed
        if view_options:
            if view_options.context_length > video_length:
                view_options = None
            elif view_options.context_length == video_length and not view_options.use_on_equal_length:
                view_options = None
        if not view_options:
            for attention_block, norm, scale_mask in zip(self.attention_blocks, self.norms, scale_masks):
                norm_hidden_states = norm(hidden_states).to(hidden_states.dtype)
                hidden_states = (
                    attention_block(
                        norm_hidden_states,
                        encoder_hidden_states=encoder_hidden_states
                        if attention_block.is_cross_attention
                        else None,
                        attention_mask=attention_mask,
                        video_length=video_length,
                        scale_mask=scale_mask,
                        cameractrl_effect=cameractrl_effect,
                        mm_kwargs=mm_kwargs,
                        transformer_options=transformer_options,
                    ) + hidden_states
                )
        else:
            # views idea gotten from diffusers AnimateDiff FreeNoise implementation:
            # https://github.com/arthur-qiu/FreeNoise-AnimateDiff/blob/main/animatediff/models/motion_module.py
            # apply sliding context windows (views)
            views = get_context_windows(num_frames=video_length, opts=view_options)
            hidden_states = rearrange(hidden_states, "(b f) d c -> b f d c", f=video_length)
            value_final = torch.zeros_like(hidden_states)
            count_final = torch.zeros_like(hidden_states)
            batched_conds = hidden_states.size(1) // video_length
            # store original camera_feature, if present
            has_camera_feature = False
            if mm_kwargs is not None:
                has_camera_feature = True
                orig_camera_feature = mm_kwargs["camera_feature"]
            # perform view options
            for sub_idxs in views:
                sub_hidden_states = rearrange(hidden_states[:, sub_idxs], "b f d c -> (b f) d c")
                if has_camera_feature:
                    mm_kwargs["camera_feature"] = orig_camera_feature[:, sub_idxs, :]
                for attention_block, norm, scale_mask in zip(self.attention_blocks, self.norms, scale_masks):
                    norm_hidden_states = norm(sub_hidden_states).to(sub_hidden_states.dtype)
                    sub_hidden_states = (
                        attention_block(
                            norm_hidden_states,
                            encoder_hidden_states=encoder_hidden_states # do these need to be changed for sub_idxs too?
                            if attention_block.is_cross_attention
                            else None,
                            attention_mask=attention_mask,
                            video_length=len(sub_idxs),
                            scale_mask=scale_mask[:, sub_idxs, :] if scale_mask is not None else scale_mask,
                            cameractrl_effect=cameractrl_effect[:, sub_idxs, :] if type(cameractrl_effect) == Tensor else cameractrl_effect,
                            mm_kwargs=mm_kwargs,
                            transformer_options=transformer_options,
                        ) + sub_hidden_states
                    )
                sub_hidden_states = rearrange(sub_hidden_states, "(b f) d c -> b f d c", f=len(sub_idxs))

                weights = get_context_weights(len(sub_idxs), view_options.fuse_method) * batched_conds
                weights_tensor = torch.Tensor(weights).to(device=hidden_states.device).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                value_final[:, sub_idxs] += sub_hidden_states * weights_tensor
                count_final[:, sub_idxs] += weights_tensor
            # restore original camera_feature
            if has_camera_feature:
                mm_kwargs["camera_feature"] = orig_camera_feature
                del orig_camera_feature
            # get weighted average of sub_hidden_states
            hidden_states = value_final / count_final
            hidden_states = rearrange(hidden_states, "b f d c -> (b f) d c")
            del value_final
            del count_final

        hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states

        output = hidden_states
        return output


class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.0, max_len=24):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
        )
        pe = torch.zeros(1, max_len, d_model)
        pe[0, :, 0::2] = torch.sin(position * div_term)
        pe[0, :, 1::2] = torch.cos(position * div_term)
        self.register_buffer("pe", pe)
        self.sub_idxs = None
        self.pe: Tensor

    def set_sub_idxs(self, sub_idxs: list[int]):
        self.sub_idxs = sub_idxs

    def forward(self, x: Tensor, mm_kwargs: dict[str]={}, transformer_options: dict[str]=None):
        #if self.sub_idxs is not None:
        #    x = x + self.pe[:, self.sub_idxs]
        #else:
        x = x + self.pe[:, : x.size(1)]
        return self.dropout(x)


class VersatileAttention(CrossAttentionMM):
    def __init__(
        self,
        attention_mode=None,
        cross_frame_attention_mode=None,
        temporal_pe=False,
        temporal_pe_max_len=24,
        ops=comfy.ops.disable_weight_init,
        *args,
        **kwargs,
    ):
        super().__init__(operations=ops, *args, **kwargs)
        assert attention_mode == "Temporal"

        self.attention_mode = attention_mode
        self.is_cross_attention = kwargs["context_dim"] is not None

        self.query_dim: int = kwargs["query_dim"]
        self.qkv_merge: comfy.ops.disable_weight_init.Linear = None
        self.camera_feature_enabled = False

        self.pos_encoder = (
            PositionalEncoding(
                kwargs["query_dim"],
                dropout=0.0,
                max_len=temporal_pe_max_len,
            )
            if (temporal_pe and attention_mode == "Temporal")
            else None
        )

    def extra_repr(self):
        return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"

    def set_scale_multiplier(self, multiplier: Union[float, None]):
        if multiplier is None or math.isclose(multiplier, 1.0):
            self.scale = 1.0
        else:
            self.scale = multiplier

    def set_sub_idxs(self, sub_idxs: list[int]):
        if self.pos_encoder != None:
            self.pos_encoder.set_sub_idxs(sub_idxs)

    def init_qkv_merge(self, ops=comfy.ops.disable_weight_init):
        self.qkv_merge = zero_module(ops.Linear(in_features=self.query_dim, out_features=self.query_dim))

    def reset_temp_vars(self):
        self.reset_attention_type()

    def forward(
        self,
        hidden_states: Tensor,
        encoder_hidden_states=None,
        attention_mask=None,
        video_length=None,
        scale_mask=None,
        cameractrl_effect: Union[float, Tensor] = 1.0,
        mm_kwargs: dict[str]={},
        transformer_options: dict[str]=None,
    ):
        if self.attention_mode != "Temporal":
            raise NotImplementedError

        d = hidden_states.shape[1]
        hidden_states = rearrange(
            hidden_states, "(b f) d c -> (b d) f c", f=video_length
        )

        if self.pos_encoder is not None:
           hidden_states = self.pos_encoder(hidden_states, mm_kwargs, transformer_options).to(hidden_states.dtype)

        encoder_hidden_states = (
            repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
            if encoder_hidden_states is not None
            else encoder_hidden_states
        )

        if self.camera_feature_enabled and self.qkv_merge is not None and mm_kwargs is not None and "camera_feature" in mm_kwargs:
            camera_feature: Tensor = mm_kwargs["camera_feature"]
            hidden_states = (self.qkv_merge(hidden_states + camera_feature) + hidden_states) * cameractrl_effect + hidden_states * (1. - cameractrl_effect)

        hidden_states = super().forward(
            hidden_states,
            encoder_hidden_states,
            value=None,
            mask=attention_mask,
            scale_mask=scale_mask,
            mm_kwargs=mm_kwargs,
            transformer_options=transformer_options,
        )

        hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)

        return hidden_states

############################################################################
### EncoderOnly Version
############################################################################
class EncoderOnlyAnimateDiffModel(AnimateDiffModel):
    def __init__(self, mm_state_dict: dict[str, Tensor], mm_info: AnimateDiffInfo):
        super().__init__(mm_state_dict=mm_state_dict, mm_info=mm_info)
        self.down_blocks: list[EncoderOnlyMotionModule] = nn.ModuleList([])
        self.up_blocks = None
        self.mid_block = None
        # fill out down/up blocks and middle block, if present
        for idx, c in enumerate(self.layer_channels):
            self.down_blocks.append(EncoderOnlyMotionModule(c, block_type=BlockType.DOWN, block_idx=idx, ops=self.ops))
    
    def _eject(self, unet_blocks: nn.ModuleList):
        # eject all EncoderOnlyTemporalModule objects from all blocks
        for block in unet_blocks:
            idx_to_pop = []
            for idx, component in enumerate(block):
                if type(component) == EncoderOnlyTemporalModule:
                    idx_to_pop.append(idx)
            # pop in backwards order, as to not disturb what the indeces refer to
            for idx in sorted(idx_to_pop, reverse=True):
                block.pop(idx)


class EncoderOnlyMotionModule(MotionModule):
    '''
    MotionModule that will store EncoderOnlyTemporalModule objects instead of VanillaTemporalModules
    '''
    def __init__(
            self,
            in_channels,
            block_type: str=BlockType.DOWN,
            block_idx: int=0,
            ops=comfy.ops.disable_weight_init
        ):
        super().__init__(in_channels=in_channels, block_type=block_type, block_idx=block_idx, ops=ops)
        if block_type == BlockType.MID:
            # mid blocks contain only a single VanillaTemporalModule
            self.motion_modules: Iterable[EncoderOnlyTemporalModule] = nn.ModuleList([EncoderOnlyTemporalModule.create(in_channels, block_type, block_idx, module_idx=0, ops=ops)])
        else:
            # down blocks contain two VanillaTemporalModules
            self.motion_modules: Iterable[EncoderOnlyTemporalModule] = nn.ModuleList(
                [
                    EncoderOnlyTemporalModule.create(in_channels, block_type, block_idx, module_idx=0, ops=ops),
                    EncoderOnlyTemporalModule.create(in_channels, block_type, block_idx, module_idx=1, ops=ops)
                ]
            )
            # up blocks contain one additional VanillaTemporalModule
            if block_type == BlockType.UP: 
                self.motion_modules.append(EncoderOnlyTemporalModule.create(in_channels, block_type, block_idx, module_idx=2, ops=ops))


class EncoderOnlyTemporalModule(VanillaTemporalModule):
    '''
    VanillaTemporalModule that will only add img_features to input_tensor while respecting effect_multival
    '''
    def __init__(
            self,
            in_channels,
            block_type: str,
            block_idx: int,
            module_idx: int,
            ops=comfy.ops.disable_weight_init,
        ):
        super().__init__(in_channels=in_channels, block_type=block_type, block_idx=block_idx, module_idx=module_idx, zero_initialize=False, ops=ops)
        # make temporal_transformer a dummy class that does nothing, but will allow inherited VanillaTemporalModule code to work
        self.temporal_transformer = DummyNNModule()

    @classmethod
    def create(cls, in_channels, block_type: str, block_idx: int, module_idx: int, ops=comfy.ops.disable_weight_init):
        return cls(in_channels=in_channels, block_type=block_type, block_idx=block_idx, module_idx=module_idx, ops=ops)

    def forward(self, input_tensor: Tensor, encoder_hidden_states=None, attention_mask=None, transformer_options=None):
        if self.effect is None:
            # do AnimateLCM-I2V stuff if needed
            if self.should_handle_img_features():
                input_tensor += self.img_features[self.block_idx]
            return input_tensor
        # handle effect
        if type(self.effect) != Tensor:
            effect = self.effect
            # do nothing if effect is 0
            if math.isclose(effect, 0.0):
                # do AnimateLCM-I2V stuff if needed
                if self.apply_ref_when_disabled and self.should_handle_img_features():
                    input_tensor += self.img_features[self.block_idx]
                return input_tensor
        else:
            effect = self.get_effect_mask(input_tensor)
        if self.should_handle_img_features():
            return input_tensor*(1.0-effect) + (input_tensor+self.img_features[self.block_idx])*effect
        return input_tensor  # since no img_features to apply, no need for weighted average
############################################################################