File size: 9,991 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from pathlib import Path
import torch
import comfy.sample as comfy_sample
from comfy.model_patcher import ModelPatcher
from .ad_settings import AdjustGroup, AnimateDiffSettings, AdjustPE, AdjustWeight
from .context import ContextOptions, ContextOptionsGroup, ContextSchedules
from .logger import logger
from .utils_model import BetaSchedules, get_available_motion_loras, get_available_motion_models, get_motion_lora_path
from .utils_motion import ADKeyframeGroup, get_combined_multival
from .motion_lora import MotionLoraInfo, MotionLoraList
from .motion_module_ad import AllPerBlocks
from .model_injection import (ModelPatcherHelper, InjectionParams, MotionModelGroup, get_mm_attachment,
load_motion_lora_as_patches, load_motion_module_gen1, load_motion_module_gen2, validate_model_compatibility_gen2,
validate_per_block_compatibility)
from .sample_settings import SampleSettings, SeedNoiseGeneration
from .sampling import outer_sample_wrapper, sliding_calc_cond_batch
class AnimateDiffLoaderGen1:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"model_name": (get_available_motion_models(),),
"beta_schedule": (BetaSchedules.ALIAS_LIST, {"default": BetaSchedules.AUTOSELECT}),
#"apply_mm_groupnorm_hack": ("BOOLEAN", {"default": True}),
},
"optional": {
"context_options": ("CONTEXT_OPTIONS",),
"motion_lora": ("MOTION_LORA",),
"ad_settings": ("AD_SETTINGS",),
"ad_keyframes": ("AD_KEYFRAMES",),
"sample_settings": ("SAMPLE_SETTINGS",),
"scale_multival": ("MULTIVAL",),
"effect_multival": ("MULTIVAL",),
"per_block": ("PER_BLOCK",),
}
}
RETURN_TYPES = ("MODEL",)
CATEGORY = "Animate Diff ππ
π
/β Gen1 nodes β "
FUNCTION = "load_mm_and_inject_params"
def load_mm_and_inject_params(self,
model: ModelPatcher,
model_name: str, beta_schedule: str,# apply_mm_groupnorm_hack: bool,
context_options: ContextOptionsGroup=None, motion_lora: MotionLoraList=None, ad_settings: AnimateDiffSettings=None,
sample_settings: SampleSettings=None, scale_multival=None, effect_multival=None, ad_keyframes: ADKeyframeGroup=None,
per_block: AllPerBlocks=None,
):
# load motion module and motion settings, if included
motion_model = load_motion_module_gen2(model_name=model_name, motion_model_settings=ad_settings)
# confirm that it is compatible with SD model
validate_model_compatibility_gen2(model=model, motion_model=motion_model)
# apply motion model to loaded_mm
if motion_lora is not None:
for lora in motion_lora.loras:
load_motion_lora_as_patches(motion_model, lora)
attachment = get_mm_attachment(motion_model)
attachment.scale_multival = scale_multival
attachment.effect_multival = effect_multival
if per_block is not None:
validate_per_block_compatibility(motion_model=motion_model, all_per_blocks=per_block)
attachment.per_block_list = per_block.per_block_list
attachment.keyframes = ad_keyframes.clone() if ad_keyframes else ADKeyframeGroup()
# create injection params
params = InjectionParams(unlimited_area_hack=False)
# apply context options
if context_options:
params.set_context(context_options)
# set motion_scale and motion_model_settings
if not ad_settings:
ad_settings = AnimateDiffSettings()
ad_settings.attn_scale = 1.0
params.set_motion_model_settings(ad_settings)
# backwards compatibility to support old way of masking scale
if params.motion_model_settings.mask_attn_scale is not None:
attachment.scale_multival = get_combined_multival(scale_multival, (params.motion_model_settings.mask_attn_scale * params.motion_model_settings.attn_scale))
# need to use a ModelPatcher that supports injection of motion modules into unet
model = model.clone()
helper = ModelPatcherHelper(model)
helper.set_all_properties(
outer_sampler_wrapper=outer_sample_wrapper,
calc_cond_batch_wrapper=sliding_calc_cond_batch,
params=params,
sample_settings=sample_settings,
motion_models=MotionModelGroup(motion_model),
)
sample_settings = helper.get_sample_settings()
if sample_settings.custom_cfg is not None:
logger.info("[Sample Settings] custom_cfg is set; will override any KSampler cfg values or patches.")
if sample_settings.sigma_schedule is not None:
logger.info("[Sample Settings] sigma_schedule is set; will override beta_schedule.")
model.add_object_patch("model_sampling", sample_settings.sigma_schedule.clone().model_sampling)
else:
# save model sampling from BetaSchedule as object patch
# if autoselect, get suggested beta_schedule from motion model
if beta_schedule == BetaSchedules.AUTOSELECT and helper.get_motion_models():
beta_schedule = helper.get_motion_models()[0].model.get_best_beta_schedule(log=True)
new_model_sampling = BetaSchedules.to_model_sampling(beta_schedule, model)
if new_model_sampling is not None:
model.add_object_patch("model_sampling", new_model_sampling)
del motion_model
return (model,)
class LegacyAnimateDiffLoaderWithContext:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"model_name": (get_available_motion_models(),),
"beta_schedule": (BetaSchedules.ALIAS_LIST, {"default": BetaSchedules.AUTOSELECT}),
#"apply_mm_groupnorm_hack": ("BOOLEAN", {"default": True}),
},
"optional": {
"context_options": ("CONTEXT_OPTIONS",),
"motion_lora": ("MOTION_LORA",),
"ad_settings": ("AD_SETTINGS",),
"sample_settings": ("SAMPLE_SETTINGS",),
"motion_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.001}),
"apply_v2_models_properly": ("BOOLEAN", {"default": True}),
"ad_keyframes": ("AD_KEYFRAMES",),
}
}
DEPRECATED = True
RETURN_TYPES = ("MODEL",)
CATEGORY = "Animate Diff ππ
π
/β Gen1 nodes β "
FUNCTION = "load_mm_and_inject_params"
def load_mm_and_inject_params(self,
model: ModelPatcher,
model_name: str, beta_schedule: str,# apply_mm_groupnorm_hack: bool,
context_options: ContextOptionsGroup=None, motion_lora: MotionLoraList=None, ad_settings: AnimateDiffSettings=None, motion_model_settings: AnimateDiffSettings=None,
sample_settings: SampleSettings=None, motion_scale: float=1.0, apply_v2_models_properly: bool=False, ad_keyframes: ADKeyframeGroup=None,
):
if ad_settings is not None:
motion_model_settings = ad_settings
# load motion module
motion_model = load_motion_module_gen1(model_name, model, motion_lora=motion_lora, motion_model_settings=motion_model_settings)
# set injection params
params = InjectionParams(
unlimited_area_hack=False,
apply_v2_properly=apply_v2_models_properly,
)
if context_options:
params.set_context(context_options)
# set motion_scale and motion_model_settings
if not motion_model_settings:
motion_model_settings = AnimateDiffSettings()
motion_model_settings.attn_scale = motion_scale
params.set_motion_model_settings(motion_model_settings)
attachment = get_mm_attachment(motion_model)
if params.motion_model_settings.mask_attn_scale is not None:
attachment.scale_multival = params.motion_model_settings.mask_attn_scale * params.motion_model_settings.attn_scale
else:
attachment.scale_multival = params.motion_model_settings.attn_scale
attachment.keyframes = ad_keyframes.clone() if ad_keyframes else ADKeyframeGroup()
# need to use a ModelPatcher that supports injection of motion modules into unet
model = model.clone()
helper = ModelPatcherHelper(model)
helper.set_all_properties(
outer_sampler_wrapper=outer_sample_wrapper,
calc_cond_batch_wrapper=sliding_calc_cond_batch,
params=params,
sample_settings=sample_settings,
motion_models=MotionModelGroup(motion_model),
)
sample_settings = helper.get_sample_settings()
if sample_settings.custom_cfg is not None:
logger.info("[Sample Settings] custom_cfg is set; will override any KSampler cfg values or patches.")
if sample_settings.sigma_schedule is not None:
logger.info("[Sample Settings] sigma_schedule is set; will override beta_schedule.")
model.add_object_patch("model_sampling", sample_settings.sigma_schedule.clone().model_sampling)
else:
# save model sampling from BetaSchedule as object patch
# if autoselect, get suggested beta_schedule from motion model
if beta_schedule == BetaSchedules.AUTOSELECT and helper.get_motion_models():
beta_schedule = helper.get_motion_models()[0].model.get_best_beta_schedule(log=True)
new_model_sampling = BetaSchedules.to_model_sampling(beta_schedule, model)
if new_model_sampling is not None:
model.add_object_patch("model_sampling", new_model_sampling)
del motion_model
return (model,)
|