File size: 6,202 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from collections.abc import Iterable
from typing import Union

import torch
from torch import Tensor

from .utils_motion import create_multival_combo, linear_conversion, normalize_min_max, extend_to_batch_size, extend_list_to_batch_size


class ScaleType:
    ABSOLUTE = "absolute"
    RELATIVE = "relative"
    LIST = [ABSOLUTE, RELATIVE]


class MultivalDynamicNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "float_val": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.001},),
            },
            "optional": {
                "mask_optional": ("MASK",),
            },
            "hidden": {
                "autosize": ("ADEAUTOSIZE", {"padding": 0}),
            }
        }
    
    RETURN_TYPES = ("MULTIVAL",)
    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/multival"
    FUNCTION = "create_multival"

    def create_multival(self, float_val: Union[float, list[float]]=1.0, mask_optional: Tensor=None):
        return (create_multival_combo(float_val=float_val, mask_optional=mask_optional),)


class MultivalScaledMaskNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "min_float_val": ("FLOAT", {"default": 0.0, "min": 0.0, "step": 0.001}),
                "max_float_val": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.001}),
                "mask": ("MASK",),
            },
            "optional": {
                "scaling": (ScaleType.LIST,),
            },
            "hidden": {
                "autosize": ("ADEAUTOSIZE", {"padding": 0}),
            }
        }

    RETURN_TYPES = ("MULTIVAL",)
    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/multival"
    FUNCTION = "create_multival"

    def create_multival(self, min_float_val: float, max_float_val: float, mask: Tensor, scaling: str=ScaleType.ABSOLUTE):
        lengths = [mask.shape[0]]
        iterable_inputs = [False, False]
        val_inputs = [min_float_val, max_float_val]
        if isinstance(min_float_val, Iterable):
            iterable_inputs[0] = True
            val_inputs[0] = list(min_float_val)
            lengths.append(len(min_float_val))
        if isinstance(max_float_val, Iterable):
            iterable_inputs[1] = True
            val_inputs[1] = list(max_float_val)
            lengths.append(len(max_float_val))
        # make sure mask and any iterable float_vals match max length
        max_length = max(lengths)
        mask = extend_to_batch_size(mask, max_length)
        for i in range(len(iterable_inputs)):
            if iterable_inputs[i] == True:
                # make sure tensors will match dimensions of mask
                val_inputs[i] = torch.tensor(extend_list_to_batch_size(val_inputs[i], max_length)).unsqueeze(-1).unsqueeze(-1)
        min_float_val, max_float_val = val_inputs
        if scaling == ScaleType.ABSOLUTE:
            mask = linear_conversion(mask.clone(), new_min=min_float_val, new_max=max_float_val)
        elif scaling == ScaleType.RELATIVE:
            mask = normalize_min_max(mask.clone(), new_min=min_float_val, new_max=max_float_val)
        else:
            raise ValueError(f"scaling '{scaling}' not recognized.")
        return MultivalDynamicNode.create_multival(self, mask_optional=mask)


class MultivalDynamicFloatInputNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "float_val": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001, "forceInput": True},),
            },
            "optional": {
                "mask_optional": ("MASK",),
            },
            "hidden": {
                "autosize": ("ADEAUTOSIZE", {"padding": 0}),
            }
        }
    
    RETURN_TYPES = ("MULTIVAL",)
    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/multival"
    FUNCTION = "create_multival"

    def create_multival(self, float_val: Union[float, list[float]]=None, mask_optional: Tensor=None):
        return MultivalDynamicNode.create_multival(self, float_val=float_val, mask_optional=mask_optional)


class MultivalDynamicFloatsNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "floats": ("FLOATS", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},),
            },
            "optional": {
                "mask_optional": ("MASK",),
            },
            "hidden": {
                "autosize": ("ADEAUTOSIZE", {"padding": 0}),
            }
        }
    
    RETURN_TYPES = ("MULTIVAL",)
    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/multival"
    FUNCTION = "create_multival"

    def create_multival(self, floats: Union[float, list[float]]=None, mask_optional: Tensor=None):
        return MultivalDynamicNode.create_multival(self, float_val=floats, mask_optional=mask_optional)


class MultivalFloatNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "float_val": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},),
            },
            "hidden": {
                "autosize": ("ADEAUTOSIZE", {"padding": 0}),
            }
        }
    
    RETURN_TYPES = ("MULTIVAL",)
    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/multival"
    FUNCTION = "create_multival"

    def create_multival(self, float_val: Union[float, list[float]]=None):
        return MultivalDynamicNode.create_multival(self, float_val=float_val)


class MultivalConvertToMaskNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "multival": ("MULTIVAL",),
            },
            "hidden": {
                "autosize": ("ADEAUTOSIZE", {"padding": 0}),
            }
        }
    
    RETURN_TYPES = ("MASK",)
    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/multival"
    FUNCTION = "convert_multival_to_mask"

    def convert_multival_to_mask(self, multival: Union[float, Tensor]):
        # if already tensor, assume is a valid mask
        if type(multival) == Tensor:
            return (multival,)
        # otherwise, make a single 1x1 mask with the proper value
        shape = (1,1,1)
        converted_multival = torch.ones(shape) * multival
        return (converted_multival,)