File size: 6,202 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
from collections.abc import Iterable
from typing import Union
import torch
from torch import Tensor
from .utils_motion import create_multival_combo, linear_conversion, normalize_min_max, extend_to_batch_size, extend_list_to_batch_size
class ScaleType:
ABSOLUTE = "absolute"
RELATIVE = "relative"
LIST = [ABSOLUTE, RELATIVE]
class MultivalDynamicNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"float_val": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.001},),
},
"optional": {
"mask_optional": ("MASK",),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("MULTIVAL",)
CATEGORY = "Animate Diff ππ
π
/multival"
FUNCTION = "create_multival"
def create_multival(self, float_val: Union[float, list[float]]=1.0, mask_optional: Tensor=None):
return (create_multival_combo(float_val=float_val, mask_optional=mask_optional),)
class MultivalScaledMaskNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"min_float_val": ("FLOAT", {"default": 0.0, "min": 0.0, "step": 0.001}),
"max_float_val": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.001}),
"mask": ("MASK",),
},
"optional": {
"scaling": (ScaleType.LIST,),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("MULTIVAL",)
CATEGORY = "Animate Diff ππ
π
/multival"
FUNCTION = "create_multival"
def create_multival(self, min_float_val: float, max_float_val: float, mask: Tensor, scaling: str=ScaleType.ABSOLUTE):
lengths = [mask.shape[0]]
iterable_inputs = [False, False]
val_inputs = [min_float_val, max_float_val]
if isinstance(min_float_val, Iterable):
iterable_inputs[0] = True
val_inputs[0] = list(min_float_val)
lengths.append(len(min_float_val))
if isinstance(max_float_val, Iterable):
iterable_inputs[1] = True
val_inputs[1] = list(max_float_val)
lengths.append(len(max_float_val))
# make sure mask and any iterable float_vals match max length
max_length = max(lengths)
mask = extend_to_batch_size(mask, max_length)
for i in range(len(iterable_inputs)):
if iterable_inputs[i] == True:
# make sure tensors will match dimensions of mask
val_inputs[i] = torch.tensor(extend_list_to_batch_size(val_inputs[i], max_length)).unsqueeze(-1).unsqueeze(-1)
min_float_val, max_float_val = val_inputs
if scaling == ScaleType.ABSOLUTE:
mask = linear_conversion(mask.clone(), new_min=min_float_val, new_max=max_float_val)
elif scaling == ScaleType.RELATIVE:
mask = normalize_min_max(mask.clone(), new_min=min_float_val, new_max=max_float_val)
else:
raise ValueError(f"scaling '{scaling}' not recognized.")
return MultivalDynamicNode.create_multival(self, mask_optional=mask)
class MultivalDynamicFloatInputNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"float_val": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001, "forceInput": True},),
},
"optional": {
"mask_optional": ("MASK",),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("MULTIVAL",)
CATEGORY = "Animate Diff ππ
π
/multival"
FUNCTION = "create_multival"
def create_multival(self, float_val: Union[float, list[float]]=None, mask_optional: Tensor=None):
return MultivalDynamicNode.create_multival(self, float_val=float_val, mask_optional=mask_optional)
class MultivalDynamicFloatsNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"floats": ("FLOATS", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},),
},
"optional": {
"mask_optional": ("MASK",),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("MULTIVAL",)
CATEGORY = "Animate Diff ππ
π
/multival"
FUNCTION = "create_multival"
def create_multival(self, floats: Union[float, list[float]]=None, mask_optional: Tensor=None):
return MultivalDynamicNode.create_multival(self, float_val=floats, mask_optional=mask_optional)
class MultivalFloatNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"float_val": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("MULTIVAL",)
CATEGORY = "Animate Diff ππ
π
/multival"
FUNCTION = "create_multival"
def create_multival(self, float_val: Union[float, list[float]]=None):
return MultivalDynamicNode.create_multival(self, float_val=float_val)
class MultivalConvertToMaskNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"multival": ("MULTIVAL",),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("MASK",)
CATEGORY = "Animate Diff ππ
π
/multival"
FUNCTION = "convert_multival_to_mask"
def convert_multival_to_mask(self, multival: Union[float, Tensor]):
# if already tensor, assume is a valid mask
if type(multival) == Tensor:
return (multival,)
# otherwise, make a single 1x1 mask with the proper value
shape = (1,1,1)
converted_multival = torch.ones(shape) * multival
return (converted_multival,)
|