File size: 12,220 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
from typing import Union
import torch
from torch import Tensor
import math
from comfy.sd import VAE
from .ad_settings import AnimateDiffSettings
from .logger import logger
from .utils_model import BIGMIN, BIGMAX, get_available_motion_models
from .utils_motion import ADKeyframeGroup, InputPIA, InputPIA_Multival, extend_list_to_batch_size, extend_to_batch_size, prepare_mask_batch
from .motion_lora import MotionLoraList
from .model_injection import MotionModelGroup, MotionModelPatcher, get_mm_attachment, load_motion_module_gen2, inject_pia_conv_in_into_model
from .motion_module_ad import AnimateDiffFormat
from .nodes_gen2 import ApplyAnimateDiffModelNode, ADKeyframeNode
# Preset values ported over from PIA repository:
# https://github.com/open-mmlab/PIA/blob/main/animatediff/utils/util.py
class PIA_RANGES:
ANIMATION_SMALL = "Animation (Small Motion)"
ANIMATION_MEDIUM = "Animation (Medium Motion)"
ANIMATION_LARGE = "Animation (Large Motion)"
LOOP_SMALL = "Loop (Small Motion)"
LOOP_MEDIUM = "Loop (Medium Motion)"
LOOP_LARGE = "Loop (Large Motion)"
STYLE_TRANSFER_SMALL = "Style Transfer (Small Motion)"
STYLE_TRANSFER_MEDIUM = "Style Transfer (Medium Motion)"
STYLE_TRANSFER_LARGE = "Style Transfer (Large Motion)"
_LOOPED = [LOOP_SMALL, LOOP_MEDIUM, LOOP_LARGE]
_LIST_ALL = [ANIMATION_SMALL, ANIMATION_MEDIUM, ANIMATION_LARGE,
LOOP_SMALL, LOOP_MEDIUM, LOOP_LARGE,
STYLE_TRANSFER_SMALL, STYLE_TRANSFER_MEDIUM, STYLE_TRANSFER_LARGE]
_MAPPING = {
ANIMATION_SMALL: [1.0, 0.9, 0.85, 0.85, 0.85, 0.8],
ANIMATION_MEDIUM: [1.0, 0.8, 0.8, 0.8, 0.79, 0.78, 0.75],
ANIMATION_LARGE: [1.0, 0.8, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.6, 0.5, 0.5],
LOOP_SMALL: [1.0, 0.9, 0.85, 0.85, 0.85, 0.8],
LOOP_MEDIUM: [1.0, 0.8, 0.8, 0.8, 0.79, 0.78, 0.75],
LOOP_LARGE: [1.0, 0.8, 0.7, 0.7, 0.7, 0.7, 0.6, 0.5],
STYLE_TRANSFER_SMALL: [0.5, 0.4, 0.4, 0.4, 0.35, 0.3],
STYLE_TRANSFER_MEDIUM: [0.5, 0.4, 0.4, 0.4, 0.35, 0.35, 0.3, 0.25, 0.2],
STYLE_TRANSFER_LARGE: [0.5, 0.2],
}
@classmethod
def get_preset(cls, preset: str) -> list[float]:
if preset in cls._MAPPING:
return cls._MAPPING[preset]
raise Exception(f"PIA Preset '{preset}' is not recognized.")
@classmethod
def is_looped(cls, preset: str) -> bool:
return preset in cls._LOOPED
class InputPIA_PaperPresets(InputPIA):
def __init__(self, preset: str, index: int, mult_multival: Union[float, Tensor]=None, effect_multival: Union[float, Tensor]=None):
super().__init__(effect_multival=effect_multival)
self.preset = preset
self.index = index
self.mult_multival = mult_multival if mult_multival is not None else 1.0
def get_mask(self, x: Tensor):
b, c, h, w = x.shape
values = PIA_RANGES.get_preset(self.preset)
# if preset is looped, make values loop
if PIA_RANGES.is_looped(self.preset):
# even length
if b % 2 == 0:
# extend to half length to get half of the loop
values = extend_list_to_batch_size(values, b // 2)
# apply second half of loop (just reverse it)
values += list(reversed(values))
# odd length
else:
inter_values = extend_list_to_batch_size(values, b // 2)
middle_vals = [values[min(len(inter_values), len(values)-1)]]
# make middle vals long enough to fill in gaps (or none if not needed)
middle_vals = middle_vals * (max(0, b-2*len(inter_values)))
values = inter_values + middle_vals + list(reversed(inter_values))
# otherwise, just extend values to desired length
else:
values = extend_list_to_batch_size(values, b)
assert len(values) == b
index = self.index
# handle negative index
if index < 0:
index = b + index
# constrain index between 0 and b-1
index = max(0, min(b-1, index))
# center values around targer index
order = [abs(i - index) for i in range(b)]
real_values = [values[order[i]] for i in range(b)]
# using real values, generate masks
tensor_values = torch.tensor(real_values).unsqueeze(-1).unsqueeze(-1)
mask = torch.ones(size=(b, h, w)) * tensor_values
# apply multi_multival to mask
if type(self.mult_multival) == Tensor or not math.isclose(self.mult_multival, 1.0):
real_mult = self.mult_multival
if type(real_mult) == Tensor:
real_mult = extend_to_batch_size(prepare_mask_batch(real_mult, x.shape), b).squeeze(1)
mask = mask * real_mult
return mask
class ApplyAnimateDiffPIAModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"motion_model": ("MOTION_MODEL_ADE",),
"image": ("IMAGE",),
"vae": ("VAE",),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
},
"optional": {
"pia_input": ("PIA_INPUT",),
"motion_lora": ("MOTION_LORA",),
"scale_multival": ("MULTIVAL",),
"effect_multival": ("MULTIVAL",),
"ad_keyframes": ("AD_KEYFRAMES",),
"prev_m_models": ("M_MODELS",),
"per_block": ("PER_BLOCK",),
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("M_MODELS",)
CATEGORY = "Animate Diff ππ
π
/β‘ Gen2 nodes β‘/PIA"
FUNCTION = "apply_motion_model"
def apply_motion_model(self, motion_model: MotionModelPatcher, image: Tensor, vae: VAE,
start_percent: float=0.0, end_percent: float=1.0, pia_input: InputPIA=None,
motion_lora: MotionLoraList=None, ad_keyframes: ADKeyframeGroup=None,
scale_multival=None, effect_multival=None, ref_multival=None, per_block=None,
prev_m_models: MotionModelGroup=None,):
new_m_models = ApplyAnimateDiffModelNode.apply_motion_model(self, motion_model, start_percent=start_percent, end_percent=end_percent,
motion_lora=motion_lora, ad_keyframes=ad_keyframes,
scale_multival=scale_multival, effect_multival=effect_multival, per_block=per_block,
prev_m_models=prev_m_models)
# most recent added model will always be first in list;
curr_model = new_m_models[0].models[0]
# confirm that model is PIA
if curr_model.model.mm_info.mm_format != AnimateDiffFormat.PIA:
raise Exception(f"Motion model '{curr_model.model.mm_info.mm_name}' is not a PIA model; cannot be used with Apply AnimateDiff-PIA Model node.")
attachment = get_mm_attachment(curr_model)
attachment.orig_pia_images = image
attachment.pia_vae = vae
if pia_input is None:
pia_input = InputPIA_Multival(1.0)
attachment.pia_input = pia_input
#curr_model.pia_multival = ref_multival
return new_m_models
class LoadAnimateDiffAndInjectPIANode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_name": (get_available_motion_models(),),
"motion_model": ("MOTION_MODEL_ADE",),
},
"optional": {
"ad_settings": ("AD_SETTINGS",),
"deprecation_warning": ("ADEWARN", {"text": "Experimental. Don't expect to work.", "warn_type": "experimental", "color": "#CFC"}),
}
}
RETURN_TYPES = ("MOTION_MODEL_ADE",)
RETURN_NAMES = ("MOTION_MODEL",)
CATEGORY = "Animate Diff ππ
π
/β‘ Gen2 nodes β‘/PIA/π§ͺexperimental"
FUNCTION = "load_motion_model"
def load_motion_model(self, model_name: str, motion_model: MotionModelPatcher, ad_settings: AnimateDiffSettings=None):
# make sure model actually has PIA conv_in
if motion_model.model.conv_in is None:
raise Exception("Passed-in motion model was expected to be PIA (contain conv_in), but did not.")
# load motion module and motion settings, if included
loaded_motion_model = load_motion_module_gen2(model_name=model_name, motion_model_settings=ad_settings)
inject_pia_conv_in_into_model(motion_model=loaded_motion_model, w_pia=motion_model)
return (loaded_motion_model,)
class PIA_ADKeyframeNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
},
"optional": {
"prev_ad_keyframes": ("AD_KEYFRAMES", ),
"scale_multival": ("MULTIVAL",),
"effect_multival": ("MULTIVAL",),
"pia_input": ("PIA_INPUT",),
"inherit_missing": ("BOOLEAN", {"default": True}, ),
"guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}),
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("AD_KEYFRAMES", )
FUNCTION = "load_keyframe"
CATEGORY = "Animate Diff ππ
π
/β‘ Gen2 nodes β‘/PIA"
def load_keyframe(self,
start_percent: float, prev_ad_keyframes=None,
scale_multival: Union[float, torch.Tensor]=None, effect_multival: Union[float, torch.Tensor]=None,
pia_input: InputPIA=None,
inherit_missing: bool=True, guarantee_steps: int=1):
return ADKeyframeNode.load_keyframe(self,
start_percent=start_percent, prev_ad_keyframes=prev_ad_keyframes,
scale_multival=scale_multival, effect_multival=effect_multival, pia_input=pia_input,
inherit_missing=inherit_missing, guarantee_steps=guarantee_steps
)
class InputPIA_MultivalNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"multival": ("MULTIVAL",),
},
# "optional": {
# "effect_multival": ("MULTIVAL",),
# }
}
RETURN_TYPES = ("PIA_INPUT",)
CATEGORY = "Animate Diff ππ
π
/β‘ Gen2 nodes β‘/PIA"
FUNCTION = "create_pia_input"
def create_pia_input(self, multival: Union[float, Tensor], effect_multival: Union[float, Tensor]=None):
return (InputPIA_Multival(multival, effect_multival),)
class InputPIA_PaperPresetsNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"preset": (PIA_RANGES._LIST_ALL,),
"batch_index": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}),
},
"optional": {
"mult_multival": ("MULTIVAL",),
"print_values": ("BOOLEAN", {"default": False},),
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
#"effect_multival": ("MULTIVAL",),
}
}
RETURN_TYPES = ("PIA_INPUT",)
CATEGORY = "Animate Diff ππ
π
/β‘ Gen2 nodes β‘/PIA"
FUNCTION = "create_pia_input"
def create_pia_input(self, preset: str, batch_index: int, mult_multival: Union[float, Tensor]=None, print_values: bool=False, effect_multival: Union[float, Tensor]=None):
# verify preset exists - function will throw error if does not
values = PIA_RANGES.get_preset(preset)
if print_values:
logger.info(f"PIA Preset '{preset}': {values}")
return (InputPIA_PaperPresets(preset=preset, index=batch_index, mult_multival=mult_multival, effect_multival=effect_multival),)
|