File size: 12,892 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
from typing import Union
from .documentation import register_description, short_desc, coll, DocHelper
from .scheduling import (evaluate_prompt_schedule, evaluate_value_schedule, TensorInterp, PromptOptions,
verify_key_value)
from .utils_model import BIGMAX
from .logger import logger
desc_values = {coll('values'): 'Write your values here.'}
desc_prompts = {coll('prompts'): 'Write your prompts here.'}
desc_clip = {'clip': 'CLIP to use for encoding prompts.'}
desc_latent = {'latent': 'Used to get the amount of frames (max_length) to use for scheduling.'}
desc_prepend_text = {'prepend_text': 'OPTIONAL, adds text before all prompts.'}
desc_append_text = {'append_text': 'OPTIONAL, adds text after all prompts.'}
desc_values_replace = {'values_replace': 'OPTIONAL, replaces keys from value_replace keys with provided value schedules. Keys in the prompt are written as `some_key`, surrounded by the ` characters.'}
desc_tensor_interp = {'tensor_interp': 'Selects method of interpolating prompt conds - defaults to lerp.'}
desc_print_schedule = {'print_schedule': 'When True, prints output values for each frame.'}
desc_max_length = {'max_length': 'Used to select the intended length of schedule. If set to 0, will use the largest index in the schedule as max_length, but will disable relative indexes (negative and decimal).'}
desc_floats = {'floats': 'List of floats, likely outputted by a Value Scheduling node.'}
desc_FLOAT = {'FLOAT': 'Float (or list of floats) to convert to FLOATS type.'}
desc_value_key = {'value_key': 'Key to use for value schedule in Prompt Scheduling node. Can only contain a-z, A-Z, 0-9, and _ characters. In Prompt Scheduling, keys can be referred to as `some_key`, where the key is surrounded by ` characters.'}
desc_prev_replace = {'prev_replace': 'OPTIONAL, other values_replace can be chained.'}
desc_output_conditioning = {'CONDITIONING': 'Encoded prompts.'}
desc_output_latent = {'LATENT': 'Unmodified input latents; can be used as pipe, or can be ignored.'}
desc_format_allowed_idxs = {'allowed idxs':
{'single': 'A positive integer (e.g. 0, 2) schedules value for frame. A negative integer (e.g. -1, -5) schedules value for frame from the end (-1 would be the last frame). ' +
'A decimal (e.g. 0.5, 1.0) selects frame based relative location in whole schedule (0.5 would be halfway, 1.0 would be last frame).',
'range': 'Using rules above, single:single chooses uninterpolated prompts from start idx (included) to end idx (excluded). Examples -> 0:12, 0:-5, 2:0.5',
'hold': 'Putting a colon after a single idx stops interpolation until the next provided index. Examples -> 0:, 0.5:, 16: '}
}
desc_format_prompt = [
'Scheduling supports two formats: JSON and pythonic.',
{'JSON': ['"idx": "your prompt here", ...'],
'pythonic': ['idx = "your prompt here", ...']},
'The idx is the index of the frame - first frame is 0, last frame is max_frames-1. An idx may be the following:',
desc_format_allowed_idxs,
'The prompts themselves should be surrounded by double quotes ("your prompt here"). Portions of prompts can use value schedules provided values_replace.',
{'JSON': ['"0": "blue rock on mountain",', '"16": "green rock in lake"'],
'pythonic': ['0 = "blue rock on mountain",', '16 = "green rock in lake"']}
]
desc_format_values = [
'Scheduling supports two formats: JSON and pythonic.',
{'JSON': ['"idx": float/int_value, ...'],
'pythonic': ['idx = float/int_value, ...']},
'The idx is the index of the frame - first frame is 0, last frame is max_frames-1. An idx may be the following:',
desc_format_allowed_idxs,
'The values can be written without any special formatting.',
{'JSON': ['"0": 1.0,', '"16": 1.3'],
'pythonic': ['0 = 1.0,', '16 = 1.3']}
]
class PromptSchedulingLatentsNode:
NodeID = 'ADE_PromptSchedulingLatents'
NodeName = 'Prompt Scheduling [Latents] ππ
π
'
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompts": ("STRING", {"multiline": True, "default": ''}),
"clip": ("CLIP",),
"latent": ("LATENT",),
},
"optional": {
"prepend_text": ("STRING", {"multiline": True, "default": '', "forceInput": True}),
"append_text": ("STRING", {"multiline": True, "default": '', "forceInput": True}),
"values_replace": ("VALUES_REPLACE",),
"print_schedule": ("BOOLEAN", {"default": False}),
"tensor_interp": (TensorInterp._LIST,)
},
}
RETURN_TYPES = ("CONDITIONING", "LATENT",)
CATEGORY = "Animate Diff ππ
π
/scheduling"
FUNCTION = "create_schedule"
Desc = [
short_desc('Encode a schedule of prompts with automatic interpolation, its length matching passed-in latent count.'),
{'Format': desc_format_prompt},
{coll('Inputs'): DocHelper.combine(desc_prompts, desc_clip, desc_latent, desc_values_replace, desc_prepend_text, desc_append_text, desc_tensor_interp, desc_print_schedule)},
{coll('Outputs'): DocHelper.combine(desc_output_conditioning, desc_output_latent)}
]
register_description(NodeID, Desc)
def create_schedule(self, prompts: str, clip, latent: dict, print_schedule=False, tensor_interp=TensorInterp.LERP,
prepend_text='', append_text='', values_replace=None):
options = PromptOptions(interp=tensor_interp, prepend_text=prepend_text, append_text=append_text,
values_replace=values_replace, print_schedule=print_schedule)
conditioning = evaluate_prompt_schedule(prompts, latent["samples"].size(0), clip, options)
return (conditioning, latent)
class PromptSchedulingNode:
NodeID = 'ADE_PromptScheduling'
NodeName = 'Prompt Scheduling ππ
π
'
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompts": ("STRING", {"multiline": True, "default": ''}),
"clip": ("CLIP",),
},
"optional": {
"prepend_text": ("STRING", {"multiline": True, "default": '', "forceInput": True}),
"append_text": ("STRING", {"multiline": True, "default": '', "forceInput": True}),
"values_replace": ("VALUES_REPLACE",),
"print_schedule": ("BOOLEAN", {"default": False}),
"max_length": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
"tensor_interp": (TensorInterp._LIST,)
},
}
RETURN_TYPES = ("CONDITIONING",)
CATEGORY = "Animate Diff ππ
π
/scheduling"
FUNCTION = "create_schedule"
Desc = [
short_desc('Encode a schedule of prompts with automatic interpolation.'),
{'Format': desc_format_prompt},
{coll('Inputs'): DocHelper.combine(desc_prompts, desc_clip, desc_values_replace, desc_prepend_text, desc_append_text, desc_max_length, desc_tensor_interp, desc_print_schedule)},
{coll('Outputs'): DocHelper.combine(desc_output_conditioning)}
]
register_description(NodeID, Desc)
def create_schedule(self, prompts: str, clip, print_schedule=False, max_length: int=0, tensor_interp=TensorInterp.LERP,
prepend_text='', append_text='', values_replace=None):
options = PromptOptions(interp=tensor_interp, prepend_text=prepend_text, append_text=append_text,
values_replace=values_replace, print_schedule=print_schedule)
conditioning = evaluate_prompt_schedule(prompts, max_length, clip, options)
return (conditioning,)
class ValueSchedulingLatentsNode:
NodeID = 'ADE_ValueSchedulingLatents'
NodeName = 'Value Scheduling [Latents] ππ
π
'
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"values": ("STRING", {"multiline": True, "default": ""}),
"latent": ("LATENT",),
},
"optional": {
"print_schedule": ("BOOLEAN", {"default": False}),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("FLOAT", "FLOATS", "INT", "INTS")
CATEGORY = "Animate Diff ππ
π
/scheduling"
FUNCTION = "create_schedule"
Desc = [
short_desc('Create a list of values with automatic interpolation, its length matching passed-in latent count.'),
{'Format': desc_format_values},
{coll('Inputs'): DocHelper.combine(desc_values, desc_latent, desc_print_schedule)},
]
register_description(NodeID, Desc)
def create_schedule(self, values: str, latent: dict, print_schedule=False):
float_vals = evaluate_value_schedule(values, latent["samples"].size(0))
int_vals = [round(x) for x in float_vals]
if print_schedule:
logger.info(f"ValueScheduling ({len(float_vals)} values):")
for i, val in enumerate(float_vals):
logger.info(f"{i} = {val}")
return (float_vals, float_vals, int_vals, int_vals)
class ValueSchedulingNode:
NodeID = 'ADE_ValueScheduling'
NodeName = 'Value Scheduling ππ
π
'
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"values": ("STRING", {"multiline": True, "default": ""}),
},
"optional": {
"print_schedule": ("BOOLEAN", {"default": False}),
"max_length": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("FLOAT", "FLOATS", "INT", "INTS")
CATEGORY = "Animate Diff ππ
π
/scheduling"
FUNCTION = "create_schedule"
Desc = [
short_desc('Create a list of values with automatic interpolation.'),
{'Format': desc_format_values},
{coll('Inputs'): DocHelper.combine(desc_values, desc_max_length, desc_print_schedule)},
]
register_description(NodeID, Desc)
def create_schedule(self, values: str, max_length: int, print_schedule=False):
float_vals = evaluate_value_schedule(values, max_length)
int_vals = [round(x) for x in float_vals]
if print_schedule:
logger.info(f"ValueScheduling ({len(float_vals)} values):")
for i, val in enumerate(float_vals):
logger.info(f"{i} = {val}")
return (float_vals, float_vals, int_vals, int_vals)
class AddValuesReplaceNode:
NodeID = 'ADE_ValuesReplace'
NodeName = 'Add Values Replace ππ
π
'
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"value_key": ("STRING", {"default": ""}),
"floats": ("FLOATS",)
},
"optional": {
"prev_replace": ("VALUES_REPLACE",),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("VALUES_REPLACE",)
CATEGORY = "Animate Diff ππ
π
/scheduling"
FUNCTION = "add_values_replace"
Desc = [
short_desc('Add a values schedule bound to a key to be used in Prompt Scheduling node.'),
{'Inputs': DocHelper.combine(desc_value_key, desc_floats, desc_prev_replace)},
]
register_description(NodeID, Desc)
def add_values_replace(self, value_key: str, floats: Union[list[float]], prev_replace: dict=None):
# key can only have a-z, A-Z, 0-9, and _ characters
verify_key_value(key=value_key)
# add/replace value floats
if prev_replace is None:
prev_replace = {}
prev_replace = prev_replace.copy()
if value_key in prev_replace:
logger.warn(f"Value key '{value_key}' is already present - corresponding floats value will be overriden.")
prev_replace[value_key] = floats
return (prev_replace,)
class FloatToFloatsNode:
NodeID = 'ADE_FloatToFloats'
NodeName = 'Float to Floats ππ
π
'
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"FLOAT": ("FLOAT", {"default": 39, "forceInput": True}),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("FLOATS",)
CATEGORY = "Animate Diff ππ
π
/scheduling"
FUNCTION = "convert_to_floats"
def convert_to_floats(self, FLOAT: Union[float, list[float]]):
floats = None
if isinstance(FLOAT, float):
floats = [float(FLOAT)]
else:
floats = list(FLOAT)
return (floats,) |