File size: 8,803 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch

import comfy.samplers

from .utils_model import BetaSchedules, SigmaSchedule, ModelSamplingType, ModelSamplingConfig, InterpolationMethod


def validate_sigma_schedule_compatibility(schedule_A: SigmaSchedule, schedule_B: SigmaSchedule,
                                          name_a: str="sigma_schedule_A", name_b: str="sigma_schedule_B"):
    if schedule_A.total_sigmas() != schedule_B.total_sigmas():
            raise Exception(f"Weighted Average cannot be taken of Sigma Schedules that do not have the same amount of sigmas; " +
                            f"{name_a} has {schedule_A.total_sigmas()} sigmas (lcm={schedule_A.is_lcm()}), " +
                            f"{name_b} has {schedule_B.total_sigmas()} sigmas (lcm={schedule_B.is_lcm()}).")


class SigmaScheduleNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "beta_schedule": (BetaSchedules.ALIAS_ACTIVE_LIST,),
            }
        }
    
    RETURN_TYPES = ("SIGMA_SCHEDULE",)
    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/sigma schedule"
    FUNCTION = "get_sigma_schedule"

    def get_sigma_schedule(self, beta_schedule: str):
        model_type = ModelSamplingType.from_alias(ModelSamplingType.EPS)
        new_model_sampling = BetaSchedules._to_model_sampling(alias=beta_schedule,
                                                              model_type=model_type)
        return (SigmaSchedule(model_sampling=new_model_sampling, model_type=model_type),)


class RawSigmaScheduleNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "raw_beta_schedule": (BetaSchedules.RAW_BETA_SCHEDULE_LIST,),
                "linear_start": ("FLOAT", {"default": 0.00085, "min": 0.0, "max": 1.0, "step": 0.000001}),
                "linear_end": ("FLOAT", {"default": 0.012, "min": 0.0, "max": 1.0, "step": 0.000001}),
                #"cosine_s": ("FLOAT", {"default": 8e-3, "min": 0.0, "max": 1.0, "step": 0.000001}),
                "sampling": (ModelSamplingType._FULL_LIST,),
                "lcm_original_timesteps": ("INT", {"default": 50, "min": 1, "max": 1000}),
                "zsnr": ("BOOLEAN", {"default": False}),
            },
            "hidden": {
                "autosize": ("ADEAUTOSIZE", {"padding": 0}),
            }
        }
    
    RETURN_TYPES = ("SIGMA_SCHEDULE",)
    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/sigma schedule"
    FUNCTION = "get_sigma_schedule"

    def get_sigma_schedule(self, raw_beta_schedule: str, linear_start: float, linear_end: float,# cosine_s: float,
                           sampling: str, lcm_original_timesteps: int, zsnr: bool, lcm_zsnr: bool=None):
        if lcm_zsnr is not None:
            zsnr = lcm_zsnr
        # from pathlib import Path
        # log_name = 'enforce_zero_terminal_snr_betas'
        # betas_file = Path(__file__).parent.parent / rf"{log_name}.pt"
        # given_betas = torch.load(betas_file, weights_only=True)
        # given_betas[-1] = 0.0
        new_config = ModelSamplingConfig(beta_schedule=raw_beta_schedule, linear_start=linear_start, linear_end=linear_end)#, given_betas=given_betas)
        if sampling != ModelSamplingType.LCM:
            lcm_original_timesteps=None
        model_type = ModelSamplingType.from_alias(sampling)    
        new_model_sampling = BetaSchedules._to_model_sampling(alias=BetaSchedules.AUTOSELECT, model_type=model_type, config_override=new_config, original_timesteps=lcm_original_timesteps)
        if zsnr:
            SigmaSchedule.apply_zsnr(new_model_sampling=new_model_sampling)
        return (SigmaSchedule(model_sampling=new_model_sampling, model_type=model_type),)


class WeightedAverageSigmaScheduleNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "schedule_A": ("SIGMA_SCHEDULE",),
                "schedule_B": ("SIGMA_SCHEDULE",),
                "weight_A": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001}),
            },
            "hidden": {
                "autosize": ("ADEAUTOSIZE", {"padding": 0}),
            }
        }
    
    RETURN_TYPES = ("SIGMA_SCHEDULE",)
    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/sigma schedule"
    FUNCTION = "get_sigma_schedule"

    def get_sigma_schedule(self, schedule_A: SigmaSchedule, schedule_B: SigmaSchedule, weight_A: float):
        validate_sigma_schedule_compatibility(schedule_A, schedule_B)
        new_sigmas = schedule_A.model_sampling.sigmas * weight_A + schedule_B.model_sampling.sigmas * (1-weight_A)
        combo_schedule = schedule_A.clone()
        combo_schedule.model_sampling.set_sigmas(new_sigmas)
        return (combo_schedule,)


class InterpolatedWeightedAverageSigmaScheduleNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "schedule_A": ("SIGMA_SCHEDULE",),
                "schedule_B": ("SIGMA_SCHEDULE",),
                "weight_A_Start": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001}),
                "weight_A_End": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001}),
                "interpolation": (InterpolationMethod._LIST,),
            },
            "hidden": {
                "autosize": ("ADEAUTOSIZE", {"padding": 0}),
            }
        }
    
    RETURN_TYPES = ("SIGMA_SCHEDULE",)
    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/sigma schedule"
    FUNCTION = "get_sigma_schedule"

    def get_sigma_schedule(self, schedule_A: SigmaSchedule, schedule_B: SigmaSchedule,
                           weight_A_Start: float, weight_A_End: float, interpolation: str):
        validate_sigma_schedule_compatibility(schedule_A, schedule_B)
        # get reverse weights, since sigmas are currently reversed
        weights = InterpolationMethod.get_weights(num_from=weight_A_Start, num_to=weight_A_End,
                                                  length=schedule_A.total_sigmas(), method=interpolation, reverse=True)
        weights = weights.to(schedule_A.model_sampling.sigmas.dtype).to(schedule_A.model_sampling.sigmas.device)
        new_sigmas = schedule_A.model_sampling.sigmas * weights + schedule_B.model_sampling.sigmas * (1.0-weights)
        combo_schedule = schedule_A.clone()
        combo_schedule.model_sampling.set_sigmas(new_sigmas)
        return (combo_schedule,)


class SplitAndCombineSigmaScheduleNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "schedule_Start": ("SIGMA_SCHEDULE",),
                "schedule_End": ("SIGMA_SCHEDULE",),
                "idx_split_percent": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001})
            },
            "hidden": {
                "autosize": ("ADEAUTOSIZE", {"padding": 0}),
            }
        }
    
    RETURN_TYPES = ("SIGMA_SCHEDULE",)
    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/sigma schedule"
    FUNCTION = "get_sigma_schedule"

    def get_sigma_schedule(self, schedule_Start: SigmaSchedule, schedule_End: SigmaSchedule, idx_split_percent: float):
        validate_sigma_schedule_compatibility(schedule_Start, schedule_End)
        # first, calculate index to act as split; get diff from 1.0 since sigmas are flipped at this stage
        idx = int((1.0-idx_split_percent) * schedule_Start.total_sigmas())
        new_sigmas = torch.cat([schedule_End.model_sampling.sigmas[:idx], schedule_Start.model_sampling.sigmas[idx:]], dim=0)
        new_schedule = schedule_Start.clone()
        new_schedule.model_sampling.set_sigmas(new_sigmas)
        return (new_schedule,)


class SigmaScheduleToSigmasNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "sigma_schedule": ("SIGMA_SCHEDULE",),
                "scheduler": (comfy.samplers.SCHEDULER_NAMES, ),
                "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
            },
            "hidden": {
                "autosize": ("ADEAUTOSIZE", {"padding": 0}),
            }
        }
    
    RETURN_TYPES = ("SIGMAS",)
    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/sigma schedule"
    FUNCTION = "get_sigmas"

    def get_sigmas(self, sigma_schedule: SigmaSchedule, scheduler: str, steps: int, denoise: float):
        total_steps = steps
        if denoise < 1.0:
            if denoise <= 0.0:
                return (torch.FloatTensor([]),)
            total_steps = int(steps/denoise)

        sigmas = comfy.samplers.calculate_sigmas(sigma_schedule, scheduler, total_steps).cpu()
        sigmas = sigmas[-(steps + 1):]
        return (sigmas, )