File size: 46,087 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 |
from typing import Callable
import math
import torch
from torch import Tensor
from torch.nn.functional import group_norm
from einops import rearrange
import comfy.model_management
import comfy.model_patcher
import comfy.patcher_extension
import comfy.samplers
import comfy.sampler_helpers
import comfy.utils
from comfy.controlnet import ControlBase
from comfy.model_base import BaseModel
from comfy.model_patcher import ModelPatcher
from comfy.patcher_extension import WrapperExecutor, WrappersMP
import comfy.conds
import comfy.ops
from .context import ContextFuseMethod, ContextSchedules, get_context_weights, get_context_windows
from .context_extras import ContextRefMode
from .sample_settings import SampleSettings, NoisedImageToInject
from .utils_model import MachineState, vae_encode_raw_batched, vae_decode_raw_batched
from .utils_motion import composite_extend, prepare_mask_batch, extend_to_batch_size
from .model_injection import InjectionParams, ModelPatcherHelper, MotionModelGroup, get_mm_attachment
from .motion_module_ad import AnimateDiffFormat, AnimateDiffInfo, AnimateDiffVersion
from .logger import logger
##################################################################################
######################################################################
# Global variable to use to more conveniently hack variable access into samplers
class AnimateDiffGlobalState:
def __init__(self):
self.model_patcher: ModelPatcher = None
self.motion_models: MotionModelGroup = None
self.params: InjectionParams = None
self.sample_settings: SampleSettings = None
self.callback_output_dict: dict[str] = {}
self.function_injections: FunctionInjectionHolder = None
self.reset()
def initialize(self, model: BaseModel):
# this function is to be run in sampling func
if not self.initialized:
self.initialized = True
if self.motion_models is not None:
self.motion_models.initialize_timesteps(model)
if self.params.context_options is not None:
self.params.context_options.initialize_timesteps(model)
if self.sample_settings.custom_cfg is not None:
self.sample_settings.custom_cfg.initialize_timesteps(model)
def prepare_current_keyframes(self, x: Tensor, timestep: Tensor):
if self.motion_models is not None:
self.motion_models.prepare_current_keyframe(x=x, t=timestep)
if self.params.context_options is not None:
self.params.context_options.prepare_current(t=timestep)
if self.sample_settings.custom_cfg is not None:
self.sample_settings.custom_cfg.prepare_current_keyframe(t=timestep)
def perform_special_model_features(self, model: BaseModel, conds: list, x_in: Tensor, model_options: dict[str]):
if self.motion_models is not None:
special_models = self.motion_models.get_special_models()
if len(special_models) > 0:
for special_model in special_models:
if special_model.model.is_in_effect():
attachment = get_mm_attachment(special_model)
if attachment.is_pia(special_model):
special_model.model.inject_unet_conv_in_pia_fancyvideo(model)
conds = get_conds_with_c_concat(conds,
attachment.get_pia_c_concat(model, x_in))
elif attachment.is_fancyvideo(special_model):
# TODO: handle other weights
special_model.model.inject_unet_conv_in_pia_fancyvideo(model)
conds = get_conds_with_c_concat(conds,
attachment.get_fancy_c_concat(model, x_in))
# add fps_embedding/motion_embedding patches
emb_patches = special_model.model.get_fancyvideo_emb_patches(dtype=x_in.dtype, device=x_in.device)
transformer_patches = model_options["transformer_options"].get("patches", {})
transformer_patches["emb_patch"] = emb_patches
model_options["transformer_options"]["patches"] = transformer_patches
return conds
def restore_special_model_features(self, model: BaseModel):
if self.motion_models is not None:
special_models = self.motion_models.get_special_models()
if len(special_models) > 0:
for special_model in reversed(special_models):
attachment = get_mm_attachment(special_model)
if attachment.is_pia(special_model):
special_model.model.restore_unet_conv_in_pia_fancyvideo(model)
elif attachment.is_fancyvideo(special_model):
# TODO: fill out
special_model.model.restore_unet_conv_in_pia_fancyvideo(model)
def reset(self):
self.initialized = False
self.hooks_initialized = False
self.start_step: int = 0
self.last_step: int = 0
self.current_step: int = 0
self.total_steps: int = 0
self.callback_output_dict.clear()
self.callback_output_dict = {}
if self.model_patcher is not None:
self.model_patcher.clean_hooks()
del self.model_patcher
self.model_patcher = None
if self.motion_models is not None:
del self.motion_models
self.motion_models = None
if self.params is not None:
self.params.context_options.reset()
del self.params
self.params = None
if self.sample_settings is not None:
del self.sample_settings
self.sample_settings = None
if self.function_injections is not None:
del self.function_injections
self.function_injections = None
def update_with_inject_params(self, params: InjectionParams):
self.params = params
def is_using_sliding_context(self):
return self.params is not None and self.params.is_using_sliding_context()
def create_exposed_params(self):
# This dict will be exposed to be used by other extensions
# DO NOT change any of the key names
# or I will find you 👁.👁
return {
"full_length": self.params.full_length,
"context_length": self.params.context_options.context_length,
"sub_idxs": self.params.sub_idxs,
}
######################################################################
##################################################################################
##################################################################################
#### Code Injection ##################################################
def unlimited_memory_required(*args, **kwargs):
return 0
def groupnorm_mm_factory(params: InjectionParams, manual_cast=False):
def groupnorm_mm_forward(self, input: Tensor) -> Tensor:
# axes_factor normalizes batch based on total conds and unconds passed in batch;
# the conds and unconds per batch can change based on VRAM optimizations that may kick in
if not params.is_using_sliding_context():
batched_conds = input.size(0)//params.full_length
else:
batched_conds = input.size(0)//params.context_options.context_length
input = rearrange(input, "(b f) c h w -> b c f h w", b=batched_conds)
if manual_cast:
weight, bias = comfy.ops.cast_bias_weight(self, input)
else:
weight, bias = self.weight, self.bias
input = group_norm(input, self.num_groups, weight, bias, self.eps)
input = rearrange(input, "b c f h w -> (b f) c h w", b=batched_conds)
return input
return groupnorm_mm_forward
def create_special_model_apply_model_wrapper(model_options: dict):
comfy.patcher_extension.add_wrapper_with_key(WrappersMP.APPLY_MODEL,
"ADE_special_model_apply_model",
_apply_model_wrapper,
model_options, is_model_options=True)
def _apply_model_wrapper(executor, *args, **kwargs):
# args (from BaseModel._apply_model):
# 0: x
# 1: t
# 2: c_concat
# 3: c_crossattn
# 4: control
# 5: transformer_options
x: Tensor = args[0]
transformer_options = args[5]
cond_or_uncond = transformer_options["cond_or_uncond"]
ad_params = transformer_options["ad_params"]
ADGS: AnimateDiffGlobalState = transformer_options["ADGS"]
if ADGS.motion_models is not None:
for motion_model in ADGS.motion_models.models:
attachment = get_mm_attachment(motion_model)
attachment.prepare_alcmi2v_features(motion_model, x=x, cond_or_uncond=cond_or_uncond, ad_params=ad_params, latent_format=executor.class_obj.latent_format)
attachment.prepare_camera_features(motion_model, x=x, cond_or_uncond=cond_or_uncond, ad_params=ad_params)
del x
return executor(*args, **kwargs)
def create_diffusion_model_groupnormed_wrapper(model_options: dict, inject_helper: 'GroupnormInjectHelper'):
comfy.patcher_extension.add_wrapper_with_key(WrappersMP.DIFFUSION_MODEL,
"ADE_groupnormed_diffusion_model",
_diffusion_model_groupnormed_wrapper_factory(inject_helper),
model_options, is_model_options=True)
def _diffusion_model_groupnormed_wrapper_factory(inject_helper: 'GroupnormInjectHelper'):
def _diffusion_model_groupnormed_wrapper(executor, *args, **kwargs):
with inject_helper:
return executor(*args, **kwargs)
return _diffusion_model_groupnormed_wrapper
######################################################################
##################################################################################
def apply_params_to_motion_models(helper: ModelPatcherHelper, params: InjectionParams):
params = params.clone()
for context in params.context_options.contexts:
if context.context_schedule == ContextSchedules.VIEW_AS_CONTEXT:
context.context_length = params.full_length
# TODO: check (and message) should be different based on use_on_equal_length setting
if params.context_options.context_length:
pass
allow_equal = params.context_options.use_on_equal_length
if params.context_options.context_length:
enough_latents = params.full_length >= params.context_options.context_length if allow_equal else params.full_length > params.context_options.context_length
else:
enough_latents = False
if params.context_options.context_length and enough_latents:
logger.info(f"Sliding context window sampling activated - latents passed in ({params.full_length}) greater than context_length {params.context_options.context_length}.")
else:
logger.info(f"Regular sampling activated - latents passed in ({params.full_length}) less or equal to context_length {params.context_options.context_length}.")
params.reset_context()
if helper.get_motion_models():
# if no context_length, treat video length as intended AD frame window
if not params.context_options.context_length:
for motion_model in helper.get_motion_models():
if not motion_model.model.is_length_valid_for_encoding_max_len(params.full_length):
raise ValueError(f"Without a context window, AnimateDiff model {motion_model.model.mm_info.mm_name} has upper limit of {motion_model.model.encoding_max_len} frames, but received {params.full_length} latents.")
helper.set_video_length(params.full_length, params.full_length)
# otherwise, treat context_length as intended AD frame window
else:
for motion_model in helper.get_motion_models():
view_options = params.context_options.view_options
context_length = view_options.context_length if view_options else params.context_options.context_length
if not motion_model.model.is_length_valid_for_encoding_max_len(context_length):
raise ValueError(f"AnimateDiff model {motion_model.model.mm_info.mm_name} has upper limit of {motion_model.model.encoding_max_len} frames for a context window, but received context length of {params.context_options.context_length}.")
helper.set_video_length(params.context_options.context_length, params.full_length)
# inject model
module_str = "modules" if len(helper.get_motion_models()) > 1 else "module"
logger.info(f"Using motion {module_str} {helper.get_name_string(show_version=True)}.")
return params
class FunctionInjectionHolder:
def __init__(self):
self.temp_uninjector: GroupnormUninjectHelper = GroupnormUninjectHelper()
self.groupnorm_injector: GroupnormInjectHelper = GroupnormInjectHelper()
def inject_functions(self, helper: ModelPatcherHelper, params: InjectionParams, model_options: dict):
# Save Original Functions - order must match between here and restore_functions
self.orig_memory_required = None
self.orig_groupnorm_forward = torch.nn.GroupNorm.forward # used to normalize latents to remove "flickering" of colors/brightness between frames
self.orig_groupnorm_forward_comfy_cast_weights = comfy.ops.disable_weight_init.GroupNorm.forward_comfy_cast_weights
self.orig_sampling_function = comfy.samplers.sampling_function # used to support sliding context windows in samplers
# Inject Functions
if params.unlimited_area_hack:
# allows for "unlimited area hack" to prevent halving of conds/unconds
self.orig_memory_required = helper.model.model.memory_required
helper.model.model.memory_required = unlimited_memory_required
if helper.get_motion_models():
# only apply groupnorm hack if PIA, v2 and not properly applied, or v1
info: AnimateDiffInfo = helper.get_motion_models()[0].model.mm_info
if ((info.mm_format == AnimateDiffFormat.PIA) or
(info.mm_version == AnimateDiffVersion.V2 and not params.apply_v2_properly) or
(info.mm_version == AnimateDiffVersion.V1)):
self.inject_groupnorm_forward = groupnorm_mm_factory(params)
self.inject_groupnorm_forward_comfy_cast_weights = groupnorm_mm_factory(params, manual_cast=True)
self.groupnorm_injector = GroupnormInjectHelper(self)
create_diffusion_model_groupnormed_wrapper(model_options, self.groupnorm_injector)
# if mps device (Apple Silicon), disable batched conds to avoid black images with groupnorm hack
try:
if helper.model.load_device.type == "mps":
self.orig_memory_required = helper.model.model.memory_required
helper.model.model.memory_required = unlimited_memory_required
except Exception:
pass
# if img_encoder or camera_encoder present, inject apply_model to handle correctly
for motion_model in helper.get_motion_models():
if (motion_model.model.img_encoder is not None) or (motion_model.model.camera_encoder is not None):
create_special_model_apply_model_wrapper(model_options)
break
del info
comfy.samplers.sampling_function = evolved_sampling_function
# create temp_uninjector to help facilitate uninjecting functions
self.temp_uninjector = GroupnormUninjectHelper(self)
def restore_functions(self, helper: ModelPatcherHelper):
# Restoration
try:
if self.orig_memory_required is not None:
helper.model.model.memory_required = self.orig_memory_required
torch.nn.GroupNorm.forward = self.orig_groupnorm_forward
comfy.ops.disable_weight_init.GroupNorm.forward_comfy_cast_weights = self.orig_groupnorm_forward_comfy_cast_weights
comfy.samplers.sampling_function = self.orig_sampling_function
except AttributeError:
logger.error("Encountered AttributeError while attempting to restore functions - likely, an error occured while trying " + \
"to save original functions before injection, and a more specific error was thrown by ComfyUI.")
class GroupnormUninjectHelper:
def __init__(self, holder: FunctionInjectionHolder=None):
self.holder = holder
self.previous_gn_forward = None
self.previous_dwi_gn_cast_weights = None
def __enter__(self):
if self.holder is None:
return self
# backup current groupnorm funcs
self.previous_gn_forward = torch.nn.GroupNorm.forward
self.previous_dwi_gn_cast_weights = comfy.ops.disable_weight_init.GroupNorm.forward_comfy_cast_weights
# restore groupnorm to default state
torch.nn.GroupNorm.forward = self.holder.orig_groupnorm_forward
comfy.ops.disable_weight_init.GroupNorm.forward_comfy_cast_weights = self.holder.orig_groupnorm_forward_comfy_cast_weights
return self
def __exit__(self, *args, **kwargs):
if self.holder is None:
return
# bring groupnorm back to previous state
torch.nn.GroupNorm.forward = self.previous_gn_forward
comfy.ops.disable_weight_init.GroupNorm.forward_comfy_cast_weights = self.previous_dwi_gn_cast_weights
self.previous_gn_forward = None
self.previous_dwi_gn_cast_weights = None
class GroupnormInjectHelper:
def __init__(self, holder: FunctionInjectionHolder=None):
self.holder = holder
self.previous_gn_forward = None
self.previous_dwi_gn_cast_weights = None
def __enter__(self):
if self.holder is None:
return self
# store previous gn_forward
self.previous_gn_forward = torch.nn.GroupNorm.forward
self.previous_dwi_gn_cast_weights = comfy.ops.disable_weight_init.GroupNorm.forward_comfy_cast_weights
# inject groupnorm functions
torch.nn.GroupNorm.forward = self.holder.inject_groupnorm_forward
comfy.ops.disable_weight_init.GroupNorm.forward_comfy_cast_weights = self.holder.inject_groupnorm_forward_comfy_cast_weights
return self
def __exit__(self, *args, **kwargs):
if self.holder is None:
return
# bring groupnorm back to previous state
torch.nn.GroupNorm.forward = self.previous_gn_forward
comfy.ops.disable_weight_init.GroupNorm.forward_comfy_cast_weights = self.previous_dwi_gn_cast_weights
self.previous_gn_forward = None
self.previous_dwi_gn_cast_weights = None
def outer_sample_wrapper(executor: WrapperExecutor, *args, **kwargs):
# NOTE: OUTER_SAMPLE wrapper patch in ModelPatcher
latents = None
cached_latents = None
cached_noise = None
function_injections = FunctionInjectionHolder()
try:
guider: comfy.samplers.CFGGuider = executor.class_obj
helper = ModelPatcherHelper(guider.model_patcher)
orig_model_options = guider.model_options
guider.model_options = comfy.model_patcher.create_model_options_clone(guider.model_options)
# create ADGS in transformer_options
ADGS = AnimateDiffGlobalState()
guider.model_options["transformer_options"]["ADGS"] = ADGS
args = list(args)
# clone params from model
params = helper.get_params().clone()
# get amount of latents passed in, and store in params
noise: Tensor = args[0]
latents: Tensor = args[1]
params.full_length = latents.size(0)
# reset global state
ADGS.reset()
# apply custom noise, if needed
disable_noise = math.isclose(noise.max(), 0.0)
seed = args[-1]
# apply params to motion model
params = apply_params_to_motion_models(helper, params)
# store and inject funtions
function_injections.inject_functions(helper, params, guider.model_options)
# prepare noise_extra_args for noise generation purposes
noise_extra_args = {"disable_noise": disable_noise}
params.set_noise_extra_args(noise_extra_args)
# if noise is not disabled, do noise stuff
if not disable_noise:
noise = helper.get_sample_settings().prepare_noise(seed, latents, noise, extra_args=noise_extra_args, force_create_noise=False)
# callback setup
original_callback = args[-3]
def ad_callback(step, x0, x, total_steps):
if original_callback is not None:
original_callback(step, x0, x, total_steps)
# store denoised latents if image_injection will be used
if not helper.get_sample_settings().image_injection.is_empty():
ADGS.callback_output_dict["x0"] = x0
# update GLOBALSTATE for next iteration
ADGS.current_step = ADGS.start_step + step + 1
args[-3] = ad_callback
ADGS.model_patcher = helper.model
ADGS.motion_models = MotionModelGroup(helper.get_motion_models())
ADGS.sample_settings = helper.get_sample_settings()
ADGS.function_injections = function_injections
# apply adapt_denoise_steps - does not work here! would need to mess with this elsewhere...
# TODO: implement proper wrapper to handle this feature...
iter_opts = helper.get_sample_settings().iteration_opts
iter_opts.initialize(latents)
# cache initial noise and latents, if needed
if iter_opts.cache_init_latents:
cached_latents = latents.clone()
if iter_opts.cache_init_noise:
cached_noise = noise.clone()
# prepare iter opts preprocess kwargs, if needed
iter_kwargs = {}
# NOTE: original KSampler stuff is not doable here, so skipping...
for curr_i in range(iter_opts.iterations):
# handle GLOBALSTATE vars and step tally
# NOTE: only KSampler/KSampler (Advanced) would have steps;
# explore modifying ComfyUI to provide this when possible?
ADGS.update_with_inject_params(params)
ADGS.start_step = kwargs.get("start_step") or 0
ADGS.current_step = ADGS.start_step
ADGS.last_step = kwargs.get("last_step") or 0
if iter_opts.iterations > 1:
logger.info(f"Iteration {curr_i+1}/{iter_opts.iterations}")
# perform any iter_opts preprocessing on latents
latents, noise = iter_opts.preprocess_latents(curr_i=curr_i, model=helper.model, latents=latents, noise=noise,
cached_latents=cached_latents, cached_noise=cached_noise,
seed=seed,
sample_settings=helper.get_sample_settings(), noise_extra_args=noise_extra_args,
**iter_kwargs)
if helper.get_sample_settings().noise_calibration is not None:
latents, noise = helper.get_sample_settings().noise_calibration.perform_calibration(sample_func=executor, model=helper.model, latents=latents, noise=noise,
is_custom=True, args=args, kwargs=kwargs)
# finalize latent_image in args
args[0] = noise
args[1] = latents
helper.pre_run()
if ADGS.sample_settings.image_injection.is_empty():
latents = executor(*tuple(args), **kwargs)
else:
ADGS.sample_settings.image_injection.initialize_timesteps(helper.model.model)
sigmas = args[3]
sigmas_list, injection_list = ADGS.sample_settings.image_injection.custom_ksampler_get_injections(helper.model, sigmas)
# useful logging
if len(injection_list) > 0:
inj_str = "s" if len(injection_list) > 1 else ""
logger.info(f"Found {len(injection_list)} applicable image injection{inj_str}; sampling will be split into {len(sigmas_list)}.")
else:
logger.info(f"Found 0 applicable image injections within the step bounds of this sampler; sampling unaffected.")
is_first = True
new_noise = noise
for i in range(len(sigmas_list)):
args[0] = new_noise
args[1] = latents
args[3] = sigmas_list[i]
latents = executor(*tuple(args), **kwargs)
if is_first:
new_noise = torch.zeros_like(latents)
# if injection expected, perform injection
if i < len(injection_list):
to_inject = injection_list[i]
latents = perform_image_injection(ADGS, helper.model.model, latents, to_inject)
return latents
finally:
guider.model_options = orig_model_options
del noise
del latents
del cached_latents
del cached_noise
del orig_model_options
# reset global state
ADGS.reset()
# clean motion_models
helper.cleanup_motion_models()
# restore injected functions
function_injections.restore_functions(helper)
del function_injections
del helper
def evolved_sampling_function(model, x: Tensor, timestep: Tensor, uncond, cond, cond_scale, model_options: dict={}, seed=None):
ADGS: AnimateDiffGlobalState = model_options["transformer_options"]["ADGS"]
ADGS.initialize(model)
ADGS.prepare_current_keyframes(x=x, timestep=timestep)
try:
# add AD/evolved-sampling params to model_options (transformer_options)
model_options = model_options.copy()
if "transformer_options" not in model_options:
model_options["transformer_options"] = {}
else:
model_options["transformer_options"] = model_options["transformer_options"].copy()
model_options["transformer_options"]["ad_params"] = ADGS.create_exposed_params()
cond, uncond = ADGS.perform_special_model_features(model, [cond, uncond], x, model_options)
# only use cfg1_optimization if not using custom_cfg or explicitly set to 1.0
uncond_ = uncond
if ADGS.sample_settings.custom_cfg is None and math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
uncond_ = None
elif ADGS.sample_settings.custom_cfg is not None:
cfg_multival = ADGS.sample_settings.custom_cfg.cfg_multival
if type(cfg_multival) != Tensor and math.isclose(cfg_multival, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
uncond_ = None
del cfg_multival
cond_pred, uncond_pred = comfy.samplers.calc_cond_batch(model, [cond, uncond_], x, timestep, model_options)
if ADGS.sample_settings.custom_cfg is not None:
cond_scale = ADGS.sample_settings.custom_cfg.get_cfg_scale(cond_pred)
model_options = ADGS.sample_settings.custom_cfg.get_model_options(model_options)
return comfy.samplers.cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options, cond, uncond)
finally:
ADGS.restore_special_model_features(model)
def perform_image_injection(ADGS: AnimateDiffGlobalState, model: BaseModel, latents: Tensor, to_inject: NoisedImageToInject) -> Tensor:
# NOTE: the latents here have already been process_latent_out'ed
# get currently used models so they can be properly reloaded after perfoming VAE Encoding
cached_loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
try:
orig_device = latents.device
orig_dtype = latents.dtype
# follow same steps as in KSampler Custom to get same denoised_x0 value
x0 = ADGS.callback_output_dict.get("x0", None)
if x0 is None:
return latents
# x0 should be process_latent_out'ed to match expected state of latents between nodes
x0 = model.process_latent_out(x0)
# first, decode x0 into images, and then re-encode
decoded_images = vae_decode_raw_batched(to_inject.vae, x0)
encoded_x0 = vae_encode_raw_batched(to_inject.vae, decoded_images)
# get difference between sampled latents and encoded_x0
latents = latents.to(device=encoded_x0.device)
encoded_x0 = latents - encoded_x0
# get mask, or default to full mask
mask = to_inject.mask
b, c, h, w = encoded_x0.shape
# need to resize images and masks to match expected dims
if mask is None:
mask = torch.ones(1, h, w)
if to_inject.invert_mask:
mask = 1.0 - mask
opts = to_inject.img_inject_opts
# composite decoded_x0 with image to inject;
# make sure to move dims to match expectation of (b,c,h,w)
composited = composite_extend(destination=decoded_images.movedim(-1, 1), source=to_inject.image.movedim(-1, 1), x=opts.x, y=opts.y, mask=mask,
multiplier=to_inject.vae.downscale_ratio, resize_source=to_inject.resize_image).movedim(1, -1)
# encode composited to get latent representation
composited = vae_encode_raw_batched(to_inject.vae, composited)
# add encoded_x0 diff to composited
composited += encoded_x0
if type(to_inject.strength_multival) == float and math.isclose(1.0, to_inject.strength_multival):
return composited.to(dtype=orig_dtype, device=orig_device)
strength = to_inject.strength_multival
if type(strength) == Tensor:
strength = extend_to_batch_size(prepare_mask_batch(strength, composited.shape), b)
return (composited * strength + latents * (1.0 - strength)).to(dtype=orig_dtype, device=orig_device)
finally:
comfy.model_management.load_models_gpu(cached_loaded_models)
# initial sliding_calc_conds_batch inspired by ashen's initial hack for 16-frame sliding context:
# https://github.com/comfyanonymous/ComfyUI/compare/master...ashen-sensored:ComfyUI:master
def sliding_calc_cond_batch(executor: Callable, model, conds: list[list[dict]], x_in: Tensor, timestep, model_options):
ADGS: AnimateDiffGlobalState = model_options["transformer_options"]["ADGS"]
if not ADGS.is_using_sliding_context():
return executor(model, conds, x_in, timestep, model_options)
def prepare_control_objects(control: ControlBase, full_idxs: list[int]):
if control.previous_controlnet is not None:
prepare_control_objects(control.previous_controlnet, full_idxs)
if not hasattr(control, "sub_idxs"):
raise ValueError(f"Control type {type(control).__name__} may not support required features for sliding context window; \
use ControlNet nodes from Kosinkadink/ComfyUI-Advanced-ControlNet, or make sure ComfyUI-Advanced-ControlNet is updated.")
control.sub_idxs = full_idxs
control.full_latent_length = ADGS.params.full_length
control.context_length = ADGS.params.context_options.context_length
def get_resized_cond(cond_in, full_idxs: list[int], context_length: int) -> list:
if cond_in is None:
return None
# reuse or resize cond items to match context requirements
resized_cond = []
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
for actual_cond in cond_in:
resized_actual_cond = actual_cond.copy()
# now we are in the inner dict - "pooled_output" is a tensor, "control" is a ControlBase object, "model_conds" is dictionary
for key in actual_cond:
try:
cond_item = actual_cond[key]
if isinstance(cond_item, Tensor):
# check that tensor is the expected length - x.size(0)
if cond_item.size(0) == x_in.size(0):
# if so, it's subsetting time - tell controls the expected indeces so they can handle them
actual_cond_item = cond_item[full_idxs]
resized_actual_cond[key] = actual_cond_item
else:
resized_actual_cond[key] = cond_item
# look for control
elif key == "control":
control_item = cond_item
prepare_control_objects(control_item, full_idxs)
resized_actual_cond[key] = control_item
del control_item
elif isinstance(cond_item, dict):
new_cond_item = cond_item.copy()
# when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor)
for cond_key, cond_value in new_cond_item.items():
if isinstance(cond_value, Tensor):
if cond_value.size(0) == x_in.size(0):
new_cond_item[cond_key] = cond_value[full_idxs]
# if has cond that is a Tensor, check if needs to be subset
elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, Tensor):
if cond_value.cond.size(0) == x_in.size(0):
new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond[full_idxs])
elif cond_key == "num_video_frames": # for SVD
new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond)
new_cond_item[cond_key].cond = context_length
resized_actual_cond[key] = new_cond_item
else:
resized_actual_cond[key] = cond_item
finally:
del cond_item # just in case to prevent VRAM issues
resized_cond.append(resized_actual_cond)
return resized_cond
# get context windows
ADGS.params.context_options.step = ADGS.current_step
context_windows = get_context_windows(ADGS.params.full_length, ADGS.params.context_options)
if ADGS.motion_models is not None:
ADGS.motion_models.set_view_options(ADGS.params.context_options.view_options)
# prepare final conds, out_counts, and biases
conds_final = [torch.zeros_like(x_in) for _ in conds]
if ADGS.params.context_options.fuse_method == ContextFuseMethod.RELATIVE:
# counts_final not used for RELATIVE fuse_method
counts_final = [torch.ones((x_in.shape[0], 1, 1, 1), device=x_in.device) for _ in conds]
else:
# default counts_final initialization
counts_final = [torch.zeros((x_in.shape[0], 1, 1, 1), device=x_in.device) for _ in conds]
biases_final = [([0.0] * x_in.shape[0]) for _ in conds]
CONTEXTREF_CONTROL_LIST_ALL = "contextref_control_list_all"
CONTEXTREF_MACHINE_STATE = "contextref_machine_state"
CONTEXTREF_CLEAN_FUNC = "contextref_clean_func"
contextref_active = False
contextref_mode = None
contextref_idxs_set = None
first_context = True
# need to make sure that contextref stuff gets cleaned up, no matter what
try:
if ADGS.params.context_options.extras.should_run_context_ref():
# check that ACN provided ContextRef as requested
temp_refcn_list = model_options["transformer_options"].get(CONTEXTREF_CONTROL_LIST_ALL, None)
if temp_refcn_list is None:
raise Exception("Advanced-ControlNet nodes are either missing or too outdated to support ContextRef. Update/install ComfyUI-Advanced-ControlNet to use ContextRef.")
if len(temp_refcn_list) == 0:
raise Exception("Unexpected ContextRef issue; Advanced-ControlNet did not provide any ContextRef objs for AnimateDiff-Evolved.")
del temp_refcn_list
# check if ContextRef ReferenceAdvanced ACN objs should_run
actually_should_run = True
for refcn in model_options["transformer_options"][CONTEXTREF_CONTROL_LIST_ALL]:
refcn.prepare_current_timestep(timestep)
if not refcn.should_run():
actually_should_run = False
if actually_should_run:
contextref_active = True
for refcn in model_options["transformer_options"][CONTEXTREF_CONTROL_LIST_ALL]:
# get mode_override if present, mode otherwise
contextref_mode = refcn.get_contextref_mode_replace() or ADGS.params.context_options.extras.context_ref.mode
contextref_idxs_set = contextref_mode.indexes.copy()
curr_window_idx = -1
naivereuse_active = False
cached_naive_conds = None
cached_naive_ctx_idxs = None
if ADGS.params.context_options.extras.should_run_naive_reuse():
cached_naive_conds = [torch.zeros_like(x_in) for _ in conds]
#cached_naive_counts = [torch.zeros((x_in.shape[0], 1, 1, 1), device=x_in.device) for _ in conds]
naivereuse_active = True
# perform calc_conds_batch per context window
for ctx_idxs in context_windows:
# allow processing to end between context window executions for faster Cancel
comfy.model_management.throw_exception_if_processing_interrupted()
curr_window_idx += 1
ADGS.params.sub_idxs = ctx_idxs
if ADGS.motion_models is not None:
ADGS.motion_models.set_sub_idxs(ctx_idxs)
ADGS.motion_models.set_video_length(len(ctx_idxs), ADGS.params.full_length)
# update exposed params
model_options["transformer_options"]["ad_params"]["sub_idxs"] = ctx_idxs
model_options["transformer_options"]["ad_params"]["context_length"] = len(ctx_idxs)
# get subsections of x, timestep, conds
sub_x = x_in[ctx_idxs]
sub_timestep = timestep[ctx_idxs]
sub_conds = [get_resized_cond(cond, ctx_idxs, len(ctx_idxs)) for cond in conds]
if contextref_active:
# set cond counter to 0 (each cond encountered will increment it by 1)
for refcn in model_options["transformer_options"][CONTEXTREF_CONTROL_LIST_ALL]:
refcn.contextref_cond_idx = 0
if first_context:
model_options["transformer_options"][CONTEXTREF_MACHINE_STATE] = MachineState.WRITE
else:
model_options["transformer_options"][CONTEXTREF_MACHINE_STATE] = MachineState.READ
if contextref_mode.mode == ContextRefMode.SLIDING: # if sliding, check if time to READ and WRITE
if curr_window_idx % (contextref_mode.sliding_width-1) == 0:
model_options["transformer_options"][CONTEXTREF_MACHINE_STATE] = MachineState.READ_WRITE
# override with indexes mode, if set
if contextref_mode.mode == ContextRefMode.INDEXES:
contains_idx = False
for i in ctx_idxs:
if i in contextref_idxs_set:
contains_idx = True
# single trigger decides if each index should only trigger READ_WRITE once per step
if not contextref_mode.single_trigger:
break
contextref_idxs_set.remove(i)
if contains_idx:
model_options["transformer_options"][CONTEXTREF_MACHINE_STATE] = MachineState.READ_WRITE
if first_context:
model_options["transformer_options"][CONTEXTREF_MACHINE_STATE] = MachineState.WRITE
else:
model_options["transformer_options"][CONTEXTREF_MACHINE_STATE] = MachineState.READ
else:
model_options["transformer_options"][CONTEXTREF_MACHINE_STATE] = MachineState.OFF
#logger.info(f"window: {curr_window_idx} - {model_options['transformer_options'][CONTEXTREF_MACHINE_STATE]}")
sub_conds_out = executor(model, sub_conds, sub_x, sub_timestep, model_options)
if ADGS.params.context_options.fuse_method == ContextFuseMethod.RELATIVE:
full_length = ADGS.params.full_length
for pos, idx in enumerate(ctx_idxs):
# bias is the influence of a specific index in relation to the whole context window
bias = 1 - abs(idx - (ctx_idxs[0] + ctx_idxs[-1]) / 2) / ((ctx_idxs[-1] - ctx_idxs[0] + 1e-2) / 2)
bias = max(1e-2, bias)
# take weighted average relative to total bias of current idx
for i in range(len(sub_conds_out)):
bias_total = biases_final[i][idx]
prev_weight = (bias_total / (bias_total + bias))
new_weight = (bias / (bias_total + bias))
conds_final[i][idx] = conds_final[i][idx] * prev_weight + sub_conds_out[i][pos] * new_weight
biases_final[i][idx] = bias_total + bias
else:
# add conds and counts based on weights of fuse method
weights = get_context_weights(len(ctx_idxs), ADGS.params.context_options.fuse_method, sigma=timestep)
weights_tensor = torch.Tensor(weights).to(device=x_in.device).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
for i in range(len(sub_conds_out)):
conds_final[i][ctx_idxs] += sub_conds_out[i] * weights_tensor
counts_final[i][ctx_idxs] += weights_tensor
# handle NaiveReuse
if naivereuse_active:
cached_naive_ctx_idxs = ctx_idxs
for i in range(len(sub_conds)):
cached_naive_conds[i][ctx_idxs] = conds_final[i][ctx_idxs] / counts_final[i][ctx_idxs]
naivereuse_active = False
# toggle first_context off, if needed
if first_context:
first_context = False
finally:
# clean contextref stuff with provided ACN function, if applicable
if contextref_active:
model_options["transformer_options"][CONTEXTREF_CLEAN_FUNC]()
# handle NaiveReuse
if cached_naive_conds is not None:
start_idx = cached_naive_ctx_idxs[0]
for z in range(0, ADGS.params.full_length, len(cached_naive_ctx_idxs)):
for i in range(len(cached_naive_conds)):
# get the 'true' idxs of this window
new_ctx_idxs = [(zz+start_idx) % ADGS.params.full_length for zz in list(range(z, z+len(cached_naive_ctx_idxs))) if zz < ADGS.params.full_length]
# make sure when getting cached_naive idxs, they are adjusted for actual length leftover length
adjusted_naive_ctx_idxs = cached_naive_ctx_idxs[:len(new_ctx_idxs)]
weighted_mean = ADGS.params.context_options.extras.naive_reuse.get_effective_weighted_mean(x_in, new_ctx_idxs)
conds_final[i][new_ctx_idxs] = (weighted_mean * (cached_naive_conds[i][adjusted_naive_ctx_idxs]*counts_final[i][new_ctx_idxs])) + ((1.-weighted_mean) * conds_final[i][new_ctx_idxs])
del cached_naive_conds
if ADGS.params.context_options.fuse_method == ContextFuseMethod.RELATIVE:
# already normalized, so return as is
del counts_final
return conds_final
else:
# normalize conds via division by context usage counts
for i in range(len(conds_final)):
conds_final[i] /= counts_final[i]
del counts_final
return conds_final
def get_conds_with_c_concat(conds: list[dict], c_concat: comfy.conds.CONDNoiseShape):
new_conds = []
for cond in conds:
resized_cond = None
if cond is not None:
# reuse or resize cond items to match context requirements
resized_cond = []
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
for actual_cond in cond:
resized_actual_cond = actual_cond.copy()
# now we are in the inner dict - "pooled_output" is a tensor, "control" is a ControlBase object, "model_conds" is dictionary
for key in actual_cond:
if key == "model_conds":
new_model_conds = actual_cond[key].copy()
if "c_concat" in new_model_conds:
new_model_conds["c_concat"] = comfy.conds.CONDNoiseShape(torch.cat(new_model_conds["c_concat"].cond, c_concat.cond, dim=1))
else:
new_model_conds["c_concat"] = c_concat
resized_actual_cond[key] = new_model_conds
resized_cond.append(resized_actual_cond)
new_conds.append(resized_cond)
return new_conds
|