File size: 19,851 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import hashlib
from pathlib import Path
from typing import Callable, Union
from collections.abc import Iterable
from time import time
import copy

from torch import Tensor
import torch
import numpy as np

import folder_paths
from comfy.model_base import SD21UNCLIP, SDXL, BaseModel, SDXLRefiner, SVD_img2vid, model_sampling, ModelType
from comfy.model_management import xformers_enabled
from comfy.model_patcher import ModelPatcher
from comfy.sd import VAE
from comfy.utils import ProgressBar

import comfy.model_sampling
import comfy_extras.nodes_model_advanced

from .logger import logger

BIGMIN = -(2**53-1)
BIGMAX = (2**53-1)

MAX_RESOLUTION = 16384  # mirrors ComfyUI's nodes.py MAX_RESOLUTION

class MachineState:
    READ = "read"
    WRITE = "write"
    READ_WRITE = "read_write"
    OFF = "off"


def vae_encode_raw_dynamic_batched(vae: VAE, pixels: Tensor, max_batch=16, min_batch=1, max_size=512*512, show_pbar=False):
    b, h, w, c = pixels.shape
    actual_size = h*w
    actual_batch_size = int(max(min_batch, min(max_batch, max_batch // max((actual_size / max_size), 1.0))))
    return vae_encode_raw_batched(vae=vae, pixels=pixels, per_batch=actual_batch_size, show_pbar=show_pbar)


def vae_decode_raw_dynamic_batched(vae: VAE, latents: Tensor, max_batch=16, min_batch=1, max_size=512*512, show_pbar=False):
    b, c, h, w = latents.shape
    actual_size = (h*vae.downscale_ratio)*(w*vae.downscale_ratio)
    actual_batch_size = int(max(min_batch, min(max_batch, max_batch // max((actual_size / max_size), 1.0))))
    return vae_decode_raw_batched(vae=vae, latents=latents, per_batch=actual_batch_size, show_pbar=show_pbar)


def vae_encode_raw_batched(vae: VAE, pixels: Tensor, per_batch=16, show_pbar=False):
    encoded = []
    pbar = None
    if show_pbar:
        pbar = ProgressBar(pixels.shape[0])
    for start_idx in range(0, pixels.shape[0], per_batch):
        sub_encoded = vae.encode(pixels[start_idx:start_idx+per_batch][:,:,:,:3])
        encoded.append(sub_encoded)
        if pbar is not None:
            pbar.update(sub_encoded.shape[0])
    return torch.cat(encoded, dim=0)


def vae_decode_raw_batched(vae: VAE, latents: Tensor, per_batch=16, show_pbar=False):
    decoded = []
    pbar = None
    if show_pbar:
        pbar = ProgressBar(latents.shape[0])
    for start_idx in range(0, latents.shape[0], per_batch):
        sub_decoded = vae.decode(latents[start_idx:start_idx+per_batch])
        decoded.append(sub_decoded)
        if pbar is not None:
            pbar.update(sub_decoded.shape[0])
    return torch.cat(decoded, dim=0)


class ModelSamplingConfig:
    def __init__(self, beta_schedule: str, linear_start: float=None, linear_end: float=None, given_betas: Tensor=None, timesteps: int=None):
        self.sampling_settings = {"beta_schedule": beta_schedule}
        if linear_start is not None:
            self.sampling_settings["linear_start"] = linear_start
        if linear_end is not None:
            self.sampling_settings["linear_end"] = linear_end
        if given_betas is not None:
            self.sampling_settings["given_betas"] = given_betas
        if timesteps is not None:
            self.sampling_settings["timesteps"] = timesteps


class ModelSamplingType:
    EPS = "eps"
    V_PREDICTION = "v_prediction"
    LCM = "lcm"

    _NON_LCM_LIST = [EPS, V_PREDICTION]
    _FULL_LIST = [EPS, V_PREDICTION, LCM]

    MAP = {
        EPS: ModelType.EPS,
        V_PREDICTION: ModelType.V_PREDICTION,
        LCM: comfy_extras.nodes_model_advanced.LCM,
    }

    @classmethod
    def from_alias(cls, alias: str):
        return cls.MAP[alias]


def factory_model_sampling_discrete_distilled(original_timesteps=50):
    class ModelSamplingDiscreteDistilledEvolved(comfy_extras.nodes_model_advanced.ModelSamplingDiscreteDistilled):
        def __init__(self, *args, **kwargs):
            self.original_timesteps = original_timesteps  # normal LCM has 50
            super().__init__(*args, **kwargs)
    return ModelSamplingDiscreteDistilledEvolved


# based on code in comfy_extras/nodes_model_advanced.py
def evolved_model_sampling(model_config: ModelSamplingConfig, model_type: ModelType, alias: str, original_timesteps: Union[int, None]=None):
    # if LCM, need to handle manually
    if BetaSchedules.is_lcm(alias) or original_timesteps is not None:
        sampling_type = comfy_extras.nodes_model_advanced.LCM
        if original_timesteps is not None:
            sampling_base = factory_model_sampling_discrete_distilled(original_timesteps=original_timesteps)
        elif alias == BetaSchedules.LCM_100:
            sampling_base = factory_model_sampling_discrete_distilled(original_timesteps=100)
        elif alias == BetaSchedules.LCM_25:
            sampling_base = factory_model_sampling_discrete_distilled(original_timesteps=25)
        else:
            sampling_base = comfy_extras.nodes_model_advanced.ModelSamplingDiscreteDistilled
        class ModelSamplingAdvancedEvolved(sampling_base, sampling_type):
            pass
        # NOTE: if I want to support zsnr, this is where I would add that code
        return ModelSamplingAdvancedEvolved(model_config)
    # otherwise, use vanilla model_sampling function
    ms = model_sampling(model_config, model_type)
    if "given_betas" in model_config.sampling_settings:
        beta_schedule = model_config.sampling_settings.get("beta_schedule", "linear")
        linear_start = model_config.sampling_settings.get("linear_start", 0.00085)
        linear_end = model_config.sampling_settings.get("linear_end", 0.012)
        timesteps = model_config.sampling_settings.get("timesteps", 1000)
        given_betas = model_config.sampling_settings.get("given_betas", None)
        ms._register_schedule(given_betas=given_betas, beta_schedule=beta_schedule,
                              timesteps=timesteps, linear_start=linear_start, linear_end=linear_end)
    return ms


class BetaSchedules:
    AUTOSELECT = "autoselect"
    SQRT_LINEAR = "sqrt_linear (AnimateDiff)"
    LINEAR_ADXL = "linear (AnimateDiff-SDXL)"
    LINEAR = "linear (HotshotXL/default)"
    AVG_LINEAR_SQRT_LINEAR = "avg(sqrt_linear,linear)"
    LCM_AVG_LINEAR_SQRT_LINEAR = "lcm avg(sqrt_linear,linear)"
    LCM = "lcm"
    LCM_100 = "lcm[100_ots]"
    LCM_25 = "lcm[25_ots]"
    LCM_SQRT_LINEAR = "lcm >> sqrt_linear"
    USE_EXISTING = "use existing"
    SQRT = "sqrt"
    COSINE = "cosine"
    SQUAREDCOS_CAP_V2 = "squaredcos_cap_v2"
    RAW_LINEAR = "linear"
    RAW_SQRT_LINEAR = "sqrt_linear"

    RAW_BETA_SCHEDULE_LIST = [RAW_LINEAR, RAW_SQRT_LINEAR, SQRT, COSINE, SQUAREDCOS_CAP_V2]

    ALIAS_LCM_LIST = [LCM, LCM_100, LCM_25, LCM_SQRT_LINEAR]

    ALIAS_ACTIVE_LIST = [SQRT_LINEAR, LINEAR_ADXL, LINEAR, AVG_LINEAR_SQRT_LINEAR, LCM_AVG_LINEAR_SQRT_LINEAR, LCM, LCM_100, LCM_SQRT_LINEAR, # LCM_25 is purposely omitted
                  SQRT, COSINE, SQUAREDCOS_CAP_V2]

    ALIAS_LIST = [AUTOSELECT, USE_EXISTING] + ALIAS_ACTIVE_LIST

    

    ALIAS_MAP = {
        SQRT_LINEAR: "sqrt_linear",
        LINEAR_ADXL: "linear", # also linear, but has different linear_end (0.020)
        LINEAR: "linear",
        LCM_100: "linear",  # distilled, 100 original timesteps
        LCM_25: "linear",  # distilled, 25 original timesteps
        LCM: "linear",  # distilled
        LCM_SQRT_LINEAR: "sqrt_linear", # distilled, sqrt_linear
        SQRT: "sqrt",
        COSINE: "cosine",
        SQUAREDCOS_CAP_V2: "squaredcos_cap_v2",
        RAW_LINEAR: "linear",
        RAW_SQRT_LINEAR: "sqrt_linear"
    }

    @classmethod
    def is_lcm(cls, alias: str):
        return alias in cls.ALIAS_LCM_LIST

    @classmethod
    def to_name(cls, alias: str):
        return cls.ALIAS_MAP[alias]
    
    @classmethod
    def to_config(cls, alias: str) -> ModelSamplingConfig:
        linear_start = None
        linear_end = None
        if alias == cls.LINEAR_ADXL:
            # uses linear_end=0.020
            linear_end = 0.020
        return ModelSamplingConfig(cls.to_name(alias), linear_start=linear_start, linear_end=linear_end)
    
    @classmethod
    def _to_model_sampling(cls, alias: str, model_type: ModelType, config_override: Union[ModelSamplingConfig,None]=None, original_timesteps: Union[int,None]=None):
        if alias == cls.USE_EXISTING:
            return None
        elif config_override != None:
            return evolved_model_sampling(config_override, model_type=model_type, alias=alias, original_timesteps=original_timesteps)
        elif alias == cls.AVG_LINEAR_SQRT_LINEAR:
            ms_linear = evolved_model_sampling(cls.to_config(cls.LINEAR), model_type=model_type, alias=cls.LINEAR)
            ms_sqrt_linear = evolved_model_sampling(cls.to_config(cls.SQRT_LINEAR), model_type=model_type, alias=cls.SQRT_LINEAR)
            avg_sigmas = (ms_linear.sigmas + ms_sqrt_linear.sigmas) / 2
            ms_linear.set_sigmas(avg_sigmas)
            return ms_linear
        elif alias == cls.LCM_AVG_LINEAR_SQRT_LINEAR:
            ms_linear = evolved_model_sampling(cls.to_config(cls.LCM), model_type=model_type, alias=cls.LCM)
            ms_sqrt_linear = evolved_model_sampling(cls.to_config(cls.LCM_SQRT_LINEAR), model_type=model_type, alias=cls.LCM_SQRT_LINEAR)
            avg_sigmas = (ms_linear.sigmas + ms_sqrt_linear.sigmas) / 2
            ms_linear.set_sigmas(avg_sigmas)
            return ms_linear
            # average out the sigmas
        ms_obj = evolved_model_sampling(cls.to_config(alias), model_type=model_type, alias=alias, original_timesteps=original_timesteps)
        return ms_obj

    @classmethod
    def to_model_sampling(cls, alias: str, model: ModelPatcher):
        return cls._to_model_sampling(alias=alias, model_type=model.model.model_type)

    @staticmethod
    def get_alias_list_with_first_element(first_element: str):
        new_list = BetaSchedules.ALIAS_LIST.copy()
        element_index = new_list.index(first_element)
        new_list[0], new_list[element_index] = new_list[element_index], new_list[0]
        return new_list


class SigmaSchedule:
    def __init__(self, model_sampling: comfy.model_sampling.ModelSamplingDiscrete, model_type: ModelType):
        self.model_sampling = model_sampling
        #self.config = config
        self.model_type = model_type
        self.original_timesteps = getattr(self.model_sampling, "original_timesteps", None)
    
    def is_lcm(self):
        return self.original_timesteps is not None

    def total_sigmas(self):
        return len(self.model_sampling.sigmas)
    
    def clone(self) -> 'SigmaSchedule':
        new_model_sampling = copy.deepcopy(self.model_sampling)
        #new_config = copy.deepcopy(self.config)
        return SigmaSchedule(model_sampling=new_model_sampling, model_type=self.model_type)

    # def clone(self):
    #     pass

    @staticmethod
    def apply_zsnr(new_model_sampling: comfy.model_sampling.ModelSamplingDiscrete):
        new_model_sampling.set_sigmas(comfy_extras.nodes_model_advanced.rescale_zero_terminal_snr_sigmas(new_model_sampling.sigmas))

    # def get_lcmified(self, original_timesteps=50, zsnr=False) -> 'SigmaSchedule':
    #     new_model_sampling = evolved_model_sampling(model_config=self.config, model_type=self.model_type, alias=None, original_timesteps=original_timesteps)
    #     if zsnr:
    #         new_model_sampling.set_sigmas(comfy_extras.nodes_model_advanced.rescale_zero_terminal_snr_sigmas(new_model_sampling.sigmas))
    #     return SigmaSchedule(model_sampling=new_model_sampling, config=self.config, model_type=self.model_type, is_lcm=True)
        

class InterpolationMethod:
    LINEAR = "linear"
    EASE_IN = "ease_in"
    EASE_OUT = "ease_out"
    EASE_IN_OUT = "ease_in_out"

    _LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]

    @classmethod
    def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
        diff = num_to - num_from
        if method == cls.LINEAR:
            weights = torch.linspace(num_from, num_to, length)
        elif method == cls.EASE_IN:
            index = torch.linspace(0, 1, length)
            weights = diff * np.power(index, 2) + num_from
        elif method == cls.EASE_OUT:
            index = torch.linspace(0, 1, length)
            weights = diff * (1 - np.power(1 - index, 2)) + num_from
        elif method == cls.EASE_IN_OUT:
            index = torch.linspace(0, 1, length)
            weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
        else:
            raise ValueError(f"Unrecognized interpolation method '{method}'.")
        if reverse:
            weights = weights.flip(dims=(0,))
        return weights


class ScaleMethods:
    NEAREST_EXACT = "nearest-exact"
    BILINEAR = "bilinear"
    AREA = "area"
    BICUBIC = "bicubic"
    LANCZOS = "lanczos"

    _LIST_IMAGE = [NEAREST_EXACT, BILINEAR, AREA, BICUBIC, LANCZOS]


class CropMethods:
    DISABLED = "disabled"
    CENTER = "center"

    _LIST = [DISABLED, CENTER]


class Folders:
    ANIMATEDIFF_MODELS = "animatediff_models"
    MOTION_LORA = "animatediff_motion_lora"
    VIDEO_FORMATS = "animatediff_video_formats"


def add_extension_to_folder_path(folder_name: str, extensions: Union[str, list[str]]):
    if folder_name in folder_paths.folder_names_and_paths:
        if isinstance(extensions, str):
            folder_paths.folder_names_and_paths[folder_name][1].add(extensions)
        elif isinstance(extensions, Iterable):
            for ext in extensions:
                folder_paths.folder_names_and_paths[folder_name][1].add(ext) 


def try_mkdir(full_path: str):
    try:
        Path(full_path).mkdir()
    except Exception:
        pass


# register motion models folder(s)
folder_paths.add_model_folder_path(Folders.ANIMATEDIFF_MODELS, str(Path(__file__).parent.parent / "models"))
folder_paths.add_model_folder_path(Folders.ANIMATEDIFF_MODELS, str(Path(folder_paths.models_dir) / Folders.ANIMATEDIFF_MODELS))
add_extension_to_folder_path(Folders.ANIMATEDIFF_MODELS, folder_paths.supported_pt_extensions)
try_mkdir(str(Path(folder_paths.models_dir) / Folders.ANIMATEDIFF_MODELS))

# register motion LoRA folder(s)
folder_paths.add_model_folder_path(Folders.MOTION_LORA, str(Path(__file__).parent.parent / "motion_lora"))
folder_paths.add_model_folder_path(Folders.MOTION_LORA, str(Path(folder_paths.models_dir) / Folders.MOTION_LORA))
add_extension_to_folder_path(Folders.MOTION_LORA, folder_paths.supported_pt_extensions)
try_mkdir(str(Path(folder_paths.models_dir) / Folders.MOTION_LORA))

# register video_formats folder
folder_paths.add_model_folder_path(Folders.VIDEO_FORMATS, str(Path(__file__).parent.parent / "video_formats"))
add_extension_to_folder_path(Folders.VIDEO_FORMATS, ".json")


def get_available_motion_models():
    return folder_paths.get_filename_list(Folders.ANIMATEDIFF_MODELS)


def get_motion_model_path(model_name: str):
    return folder_paths.get_full_path(Folders.ANIMATEDIFF_MODELS, model_name)


def get_available_motion_loras():
    return folder_paths.get_filename_list(Folders.MOTION_LORA)


def get_motion_lora_path(lora_name: str):
    return folder_paths.get_full_path(Folders.MOTION_LORA, lora_name)


# modified from https://stackoverflow.com/questions/22058048/hashing-a-file-in-python
def calculate_file_hash(filename: str, hash_every_n: int = 50):
    h = hashlib.sha256()
    b = bytearray(1024*1024)
    mv = memoryview(b)
    with open(filename, 'rb', buffering=0) as f:
        i = 0
        # don't hash entire file, only portions of it
        while n := f.readinto(mv):
            if i%hash_every_n == 0:
                h.update(mv[:n])
            i += 1
    return h.hexdigest()


def calculate_model_hash(model: ModelPatcher):
    unet = model.model.diff
    t = unet.input_blocks[1]
    m = hashlib.sha256()
    for buf in t.buffers():
        m.update(buf.cpu().numpy().view(np.uint8))
    return m.hexdigest()


def strip_path(path):
    # removes whitespace and single quotes from either end of string, if present
    path = path.strip()
    if path.startswith("\""):
        path = path[1:]
    if path.endswith("\""):
        path = path[:-1]
    return path


class ModelTypeSD:
    SD1_5 = "SD1.5"
    SD2_1 = "SD2.1"
    SDXL = "SDXL"
    SDXL_REFINER = "SDXL_Refiner"
    SVD = "SVD"

    _LIST = [SD1_5, SD2_1, SDXL, SDXL_REFINER, SVD]


def get_sd_model_type(model: ModelPatcher) -> str:
    if model is None:
        return None
    type_str = str(type(model.model).__name__)
    # instructpix2pix models should be allowed to work with AD
    if type(model.model) == BaseModel or type_str == "SD15_instructpix2pix":
        return ModelTypeSD.SD1_5
    elif type(model.model) == SDXL or type_str == "SDXL_instructpix2pix":
        return ModelTypeSD.SDXL
    elif type(model.model) == SD21UNCLIP:
        return ModelTypeSD.SD2_1
    elif type(model.model) == SDXLRefiner:
        return ModelTypeSD.SDXL_REFINER
    elif type(model.model) == SVD_img2vid:
        return ModelTypeSD.SVD
    else:
        return type_str

def is_checkpoint_sd1_5(model: ModelPatcher):
    return False if model is None else type(model.model) == BaseModel

def is_checkpoint_sdxl(model: ModelPatcher):
    return False if model is None else type(model.model) == SDXL


def raise_if_not_checkpoint_sd1_5(model: ModelPatcher):
    if not is_checkpoint_sd1_5(model):
        raise ValueError(f"For AnimateDiff, SD Checkpoint (model) is expected to be SD1.5-based (BaseModel), but was: {type(model.model).__name__}")


# TODO: remove this filth when xformers bug gets fixed in future xformers version
# NOTE: avoid using this for now to avoid false positives with pytorch or non-AD stuff like SVD
def wrap_function_to_inject_xformers_bug_info(function_to_wrap: Callable) -> Callable:
    if not xformers_enabled:
        return function_to_wrap
    else:
        def wrapped_function(*args, **kwargs):
            try:
                return function_to_wrap(*args, **kwargs)
            except RuntimeError as e:
                if str(e).startswith("CUDA error: invalid configuration argument"):
                    raise RuntimeError(f"An xformers bug was encountered in AnimateDiff - this is unexpected, \
                                       report this to Kosinkadink/ComfyUI-AnimateDiff-Evolved repo as an issue, \
                                       and a workaround for now is to run ComfyUI with the --disable-xformers argument.")
                raise
        return wrapped_function


class Timer(object):
    __slots__ = ("start_time", "end_time")

    def __init__(self) -> None:
        self.start_time = 0.0
        self.end_time = 0.0

    def start(self) -> None:
        self.start_time = time()

    def update(self) -> None:
        self.start()

    def stop(self) -> float:
        self.end_time = time()
        return self.get_time_diff()

    def get_time_diff(self) -> float:
        return self.end_time - self.start_time

    def get_time_current(self) -> float:
        return time() - self.start_time


# TODO: possibly add configuration file in future when needed?
# # Load config settings
# ADE_DIR = Path(__file__).parent.parent
# ADE_CONFIG_FILE = ADE_DIR / "ade_config.json"

# class ADE_Settings:
#     USE_XFORMERS_IN_VERSATILE_ATTENTION = "use_xformers_in_VersatileAttention"

# # Create ADE config if not present
# ABS_CONFIG = {
#     ADE_Settings.USE_XFORMERS_IN_VERSATILE_ATTENTION: True
# }
# if not ADE_CONFIG_FILE.exists():
#     with ADE_CONFIG_FILE.open("w") as f:
#         json.dumps(ABS_CONFIG, indent=4)
# # otherwise, load it and use values
# else:
#     loaded_values: dict = None
#     with ADE_CONFIG_FILE.open("r") as f:
#         loaded_values = json.load(f)
#     if loaded_values is not None:
#         for key, value in loaded_values.items():
#             if key in ABS_CONFIG:
#                 ABS_CONFIG[key] = value