File size: 17,530 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
from typing import Union
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from abc import ABC, abstractmethod
from collections.abc import Iterable
import comfy.model_management as model_management
import comfy.ops
import comfy.utils
from comfy.cli_args import args
from comfy.ldm.modules.attention import attention_basic, attention_pytorch, attention_split, attention_sub_quad, default
from .logger import logger
# until xformers bug is fixed, do not use xformers for VersatileAttention! TODO: change this when fix is out
# logic for choosing optimized_attention method taken from comfy/ldm/modules/attention.py
# a fallback_attention_mm is selected to avoid CUDA configuration limitation with pytorch's scaled_dot_product
optimized_attention_mm = attention_basic
fallback_attention_mm = attention_basic
if model_management.xformers_enabled():
pass
#optimized_attention_mm = attention_xformers
if model_management.pytorch_attention_enabled():
optimized_attention_mm = attention_pytorch
if args.use_split_cross_attention:
fallback_attention_mm = attention_split
else:
fallback_attention_mm = attention_sub_quad
else:
if args.use_split_cross_attention:
optimized_attention_mm = attention_split
else:
optimized_attention_mm = attention_sub_quad
class CrossAttentionMM(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None,
operations=comfy.ops.disable_weight_init):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.actual_attention = optimized_attention_mm
self.heads = heads
self.dim_head = dim_head
self.scale = None
self.default_scale = dim_head ** -0.5
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
def reset_attention_type(self):
self.actual_attention = optimized_attention_mm
def forward(self, x, context=None, value=None, mask=None, scale_mask=None, mm_kwargs=None, transformer_options=None):
q = self.to_q(x)
context = default(context, x)
k: Tensor = self.to_k(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
# apply custom scale by multiplying k by scale factor
if self.scale is not None:
k *= self.scale
# apply scale mask, if present
if scale_mask is not None:
k *= scale_mask
try:
out = self.actual_attention(q, k, v, self.heads, mask)
except RuntimeError as e:
if str(e).startswith("CUDA error: invalid configuration argument"):
self.actual_attention = fallback_attention_mm
out = self.actual_attention(q, k, v, self.heads, mask)
else:
raise
return self.to_out(out)
# TODO: set up comfy.ops style classes for groupnorm and other functions
class GroupNormAD(torch.nn.GroupNorm):
def __init__(self, num_groups: int, num_channels: int, eps: float = 1e-5, affine: bool = True,
device=None, dtype=None) -> None:
super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps, affine=affine, device=device, dtype=dtype)
def forward(self, input: Tensor) -> Tensor:
return F.group_norm(
input, self.num_groups, self.weight, self.bias, self.eps)
# applies min-max normalization, from:
# https://stackoverflow.com/questions/68791508/min-max-normalization-of-a-tensor-in-pytorch
def normalize_min_max(x: Tensor, new_min=0.0, new_max=1.0):
return linear_conversion(x, x_min=x.min(), x_max=x.max(), new_min=new_min, new_max=new_max)
def linear_conversion(x, x_min=0.0, x_max=1.0, new_min=0.0, new_max=1.0):
return (((x - x_min)/(x_max - x_min)) * (new_max - new_min)) + new_min
# adapted from comfy/sample.py
def prepare_mask_batch(mask: Tensor, shape: Tensor, multiplier: int=1, match_dim1=False):
mask = mask.clone()
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[2]*multiplier, shape[3]*multiplier), mode="bilinear")
if match_dim1:
mask = torch.cat([mask] * shape[1], dim=1)
return mask
def extend_to_batch_size(tensor: Tensor, batch_size: int):
if tensor.shape[0] > batch_size:
return tensor[:batch_size]
elif tensor.shape[0] < batch_size:
remainder = batch_size-tensor.shape[0]
return torch.cat([tensor] + [tensor[-1:]]*remainder, dim=0)
return tensor
def extend_list_to_batch_size(_list: list, batch_size: int):
if len(_list) > batch_size:
return _list[:batch_size]
elif len(_list) < batch_size:
return _list + _list[-1:]*(batch_size-len(_list))
return _list.copy()
# from comfy/controlnet.py
def ade_broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
#print(current_batch_size, target_batch_size)
if current_batch_size == 1:
return tensor
per_batch = target_batch_size // batched_number
tensor = tensor[:per_batch]
if per_batch > tensor.shape[0]:
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
current_batch_size = tensor.shape[0]
if current_batch_size == target_batch_size:
return tensor
else:
return torch.cat([tensor] * batched_number, dim=0)
# originally from comfy_extras/nodes_mask.py::composite function
def composite_extend(destination: Tensor, source: Tensor, x: int, y: int, mask: Tensor = None, multiplier = 8, resize_source = False):
source = source.to(destination.device)
if resize_source:
source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear")
source = extend_to_batch_size(source, destination.shape[0])
x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier))
y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier))
left, top = (x // multiplier, y // multiplier)
right, bottom = (left + source.shape[3], top + source.shape[2],)
if mask is None:
mask = torch.ones_like(source)
else:
mask = mask.to(destination.device, copy=True)
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(source.shape[2], source.shape[3]), mode="bilinear")
mask = extend_to_batch_size(mask, source.shape[0])
# calculate the bounds of the source that will be overlapping the destination
# this prevents the source trying to overwrite latent pixels that are out of bounds
# of the destination
visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),)
mask = mask[:, :, :visible_height, :visible_width]
inverse_mask = torch.ones_like(mask) - mask
source_portion = mask * source[:, :, :visible_height, :visible_width]
destination_portion = inverse_mask * destination[:, :, top:bottom, left:right]
destination[:, :, top:bottom, left:right] = source_portion + destination_portion
return destination
def get_sorted_list_via_attr(objects: list, attr: str) -> list:
if not objects:
return objects
elif len(objects) <= 1:
return [x for x in objects]
# now that we know we have to sort, do it following these rules:
# a) if objects have same value of attribute, maintain their relative order
# b) perform sorting of the groups of objects with same attributes
unique_attrs = {}
for o in objects:
val_attr = getattr(o, attr)
attr_list: list = unique_attrs.get(val_attr, list())
attr_list.append(o)
if val_attr not in unique_attrs:
unique_attrs[val_attr] = attr_list
# now that we have the unique attr values grouped together in relative order, sort them by key
sorted_attrs = dict(sorted(unique_attrs.items()))
# now flatten out the dict into a list to return
sorted_list = []
for object_list in sorted_attrs.values():
sorted_list.extend(object_list)
return sorted_list
class MotionCompatibilityError(ValueError):
pass
class InputPIA(ABC):
def __init__(self, effect_multival: Union[float, Tensor]=None):
self.effect_multival = effect_multival if effect_multival is not None else 1.0
@abstractmethod
def get_mask(self, x: Tensor):
pass
class InputPIA_Multival(InputPIA):
def __init__(self, multival: Union[float, Tensor], effect_multival: Union[float, Tensor]=None):
super().__init__(effect_multival=effect_multival)
self.multival = multival
def get_mask(self, x: Tensor):
if type(self.multival) is Tensor:
return self.multival
# if not Tensor, then is float, and simply return a mask with the right dimensions + value
b, c, h, w = x.shape
mask = torch.ones(size=(b, h, w))
return mask * self.multival
def create_multival_combo(float_val: Union[float, list[float]], mask_optional: Tensor=None):
# first, normalize inputs
# if float_val is iterable, treat as a list and assume inputs are floats
float_is_iterable = False
if isinstance(float_val, Iterable):
float_is_iterable = True
float_val = list(float_val)
# if mask present, make sure float_val list can be applied to list - match lengths
if mask_optional is not None:
if len(float_val) < mask_optional.shape[0]:
# copies last entry enough times to match mask shape
float_val = extend_list_to_batch_size(float_val, mask_optional.shape[0])
if mask_optional.shape[0] < len(float_val):
mask_optional = extend_to_batch_size(mask_optional, len(float_val))
float_val = float_val[:mask_optional.shape[0]]
float_val: Tensor = torch.tensor(float_val).unsqueeze(-1).unsqueeze(-1)
# now that inputs are normalized, figure out what value to actually return
if mask_optional is not None:
mask_optional = mask_optional.clone()
if float_is_iterable:
mask_optional = mask_optional[:] * float_val.to(mask_optional.dtype).to(mask_optional.device)
else:
mask_optional = mask_optional * float_val
return mask_optional
else:
if not float_is_iterable:
return float_val
# create a dummy mask of b,h,w=float_len,1,1 (sigle pixel)
# purpose is for float input to work with mask code, without special cases
float_len = float_val.shape[0] if float_is_iterable else 1
shape = (float_len,1,1)
mask_optional = torch.ones(shape)
mask_optional = mask_optional[:] * float_val.to(mask_optional.dtype).to(mask_optional.device)
return mask_optional
def get_combined_multival(multivalA: Union[float, Tensor], multivalB: Union[float, Tensor], force_leader_A=False) -> Union[float, Tensor]:
if multivalA is None and multivalB is None:
return 1.0
# if one is None, use the other
if multivalA is None:
return multivalB
elif multivalB is None:
return multivalA
# both have a value - combine them based on type
# if both are Tensors, make dims match before multiplying
if type(multivalA) == Tensor and type(multivalB) == Tensor:
if force_leader_A:
leader,follower = (multivalA,multivalB)
batch_size = multivalA.shape[0]
else:
areaA = multivalA.shape[1]*multivalA.shape[2]
areaB = multivalB.shape[1]*multivalB.shape[2]
# match height/width to mask with larger area
leader,follower = (multivalA,multivalB) if areaA >= areaB else (multivalB,multivalA)
batch_size = multivalA.shape[0] if multivalA.shape[0] >= multivalB.shape[0] else multivalB.shape[0]
# make follower same dimensions as leader
follower = torch.unsqueeze(follower, 1)
follower = comfy.utils.common_upscale(follower, leader.shape[-1], leader.shape[-2], "bilinear", "center")
follower = torch.squeeze(follower, 1)
# make sure batch size will match
leader = extend_to_batch_size(leader, batch_size)
follower = extend_to_batch_size(follower, batch_size)
return leader * follower
# otherwise, just multiply them together - one of them is a float
return multivalA * multivalB
def resize_multival(multival: Union[float, Tensor], batch_size: int, height: int, width: int):
if multival is None:
return 1.0
if type(multival) != Tensor:
return multival
multival = torch.unsqueeze(multival, 1)
multival = comfy.utils.common_upscale(multival, height, width, "bilinear", "center")
multival = torch.squeeze(multival, 1)
multival = extend_to_batch_size(multival, batch_size)
return multival
def get_combined_input(inputA: Union[InputPIA, None], inputB: Union[InputPIA, None], x: Tensor):
if inputA is None:
inputA = InputPIA_Multival(1.0)
if inputB is None:
inputB = InputPIA_Multival(1.0)
return get_combined_multival(inputA.get_mask(x), inputB.get_mask(x))
def get_combined_input_effect_multival(inputA: Union[InputPIA, None], inputB: Union[InputPIA, None]):
if inputA is None:
inputA = InputPIA_Multival(1.0)
if inputB is None:
inputB = InputPIA_Multival(1.0)
return get_combined_multival(inputA.effect_multival, inputB.effect_multival)
class ADKeyframe:
def __init__(self,
start_percent: float = 0.0,
scale_multival: Union[float, Tensor]=None,
effect_multival: Union[float, Tensor]=None,
cameractrl_multival: Union[float, Tensor]=None,
pia_input: InputPIA=None,
inherit_missing: bool=True,
guarantee_steps: int=1,
default: bool=False,
):
self.start_percent = start_percent
self.start_t = 999999999.9
self.scale_multival = scale_multival
self.effect_multival = effect_multival
self.cameractrl_multival = cameractrl_multival
self.pia_input = pia_input
self.inherit_missing = inherit_missing
self.guarantee_steps = guarantee_steps
self.default = default
def has_scale(self):
return self.scale_multival is not None
def has_effect(self):
return self.effect_multival is not None
def has_cameractrl_effect(self):
return self.cameractrl_multival is not None
def has_pia_input(self):
return self.pia_input is not None
class ADKeyframeGroup:
def __init__(self):
self.keyframes: list[ADKeyframe] = []
self.keyframes.append(ADKeyframe(guarantee_steps=1, default=True))
def add(self, keyframe: ADKeyframe):
# remove any default keyframes that match start_percent of new keyframe
default_to_delete = []
for i in range(len(self.keyframes)):
if self.keyframes[i].default and self.keyframes[i].start_percent == keyframe.start_percent:
default_to_delete.append(i)
for i in reversed(default_to_delete):
self.keyframes.pop(i)
# add to end of list, then sort
self.keyframes.append(keyframe)
self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
def get_index(self, index: int) -> Union[ADKeyframe, None]:
try:
return self.keyframes[index]
except IndexError:
return None
def has_index(self, index: int) -> int:
return index >=0 and index < len(self.keyframes)
def __getitem__(self, index) -> ADKeyframe:
return self.keyframes[index]
def __len__(self) -> int:
return len(self.keyframes)
def is_empty(self) -> bool:
return len(self.keyframes) == 0
def clone(self) -> 'ADKeyframeGroup':
cloned = ADKeyframeGroup()
for tk in self.keyframes:
if not tk.default:
cloned.add(tk)
return cloned
class DummyNNModule(nn.Module):
class DoNothingWhenCalled:
def __call__(self, *args, **kwargs):
return
'''
Class that does not throw exceptions for almost anything you throw at it. As name implies, does nothing.
'''
def __init__(self):
super().__init__()
def __getattr__(self, *args, **kwargs):
return self.DoNothingWhenCalled()
def __setattr__(self, name, value):
pass
def __iter__(self, *args, **kwargs):
pass
def __next__(self, *args, **kwargs):
pass
def __len__(self, *args, **kwargs):
pass
def __getitem__(self, *args, **kwargs):
pass
def __setitem__(self, *args, **kwargs):
pass
def __call__(self, *args, **kwargs):
pass
|