File size: 6,622 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import numpy as np

import torch
from torchvision import transforms
from .pipeline_flux_fill import FluxFillPipeline

import comfy.model_management as mm
from .utils import convert_diffusers_flux_lora

script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

class LoadCatvtonFlux:
    
    RETURN_TYPES = ("CatvtonFluxModel",)
    FUNCTION = "load_catvton_flux"
    CATEGORY = "CatvtonFluxWrapper"

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
        },
    } 
    
    def load_catvton_flux(self):

        load_device = mm.text_encoder_device()
        offload_device = mm.text_encoder_offload_device()

        print("Start loading LoRA weights")
        state_dict, network_alphas = FluxFillPipeline.lora_state_dict(
            pretrained_model_name_or_path_or_dict="xiaozaa/catvton-flux-lora-alpha",     ## The tryon Lora weights
            weight_name="pytorch_lora_weights.safetensors",
            return_alphas=True
        )
        is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")
        print('Loading diffusion model ...')
        pipe = FluxFillPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-Fill-dev",
            torch_dtype=torch.bfloat16
        ).to(load_device)
        FluxFillPipeline.load_lora_into_transformer(
            state_dict=state_dict,
            network_alphas=network_alphas,
            transformer=pipe.transformer,
        )
        pipe.transformer.to(torch.bfloat16)
        print('Loading Finished!')

        model = {"pipe": pipe}
        
        return (model,)


class CatvtonFluxSampler:
    
    RETURN_TYPES = ("IMAGE", "IMAGE",)
    RETURN_NAMES = ("TryonResult", "GarmentResult",)

    FUNCTION = "sample"
    CATEGORY = "CatvtonFluxWrapper"

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "CatvtonFluxModel": ("CatvtonFluxModel",),
                "prompt": ("STRING",),
                "image": ("IMAGE",),
                "mask": ("MASK",),
                "garment": ("IMAGE",),
                "steps": ("INT", {"default": 30}),
                "guidance_scale": ("FLOAT", {"default": 30.0}),
                "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                "width": ("INT", {"default": 768}),
                "height": ("INT", {"default": 1024}),
                "keep_in_GPU": ("BOOLEAN", {"default": False}),
        },
    } 
    
    def sample(self, CatvtonFluxModel, prompt, image, mask, garment, steps=30, guidance_scale=30.0, seed=-1, width=768, height=1024, keep_in_GPU=False):
        load_device = mm.text_encoder_device()
        offload_device = mm.text_encoder_offload_device()

        pipe = CatvtonFluxModel["pipe"]

        # check if the model is in the right device
        if not pipe.transformer.device == load_device:
            pipe.transformer.to(load_device)

        size=(width, height)

        # Add transform
        transform = transforms.Compose([
            transforms.Normalize([0.5], [0.5])  # For RGB images
        ])

        image = image.permute(0, 3, 1, 2)
        mask = mask[:, None, ...]
        garment = garment.permute(0, 3, 1, 2)

        # Transform images using the new preprocessing
        image = transform(image)
        garment = transform(garment)

        # Create concatenated images
        inpaint_image = torch.cat([garment, image], dim=3)  # Concatenate along width
        garment_mask = torch.zeros_like(mask)
        extended_mask = torch.cat([garment_mask, mask], dim=3)

        result = pipe(
            height=size[1],
            width=size[0] * 2,
            image=inpaint_image[0],
            mask_image=extended_mask[0],
            num_inference_steps=steps,
            generator=torch.Generator(device=load_device).manual_seed(seed),
            max_sequence_length=512,
            guidance_scale=guidance_scale,
            prompt=prompt,
        ).images[0]

        if not keep_in_GPU:
            pipe.transformer.to(offload_device)

        # Split and save results
        width = size[0]
        garment_result = result.crop((0, 0, width, size[1]))
        tryon_result = result.crop((width, 0, width * 2, size[1]))

        tryon_result = torch.tensor(
            np.array(tryon_result) / 255.0, dtype=torch.float32
        ).unsqueeze(0)
        garment_result = torch.tensor(
            np.array(garment_result) / 255.0, dtype=torch.float32
        ).unsqueeze(0)

        return (tryon_result, garment_result,)

class LoadCatvtonFluxLoRA:
    
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_catvton_flux_lora"
    CATEGORY = "CatvtonFluxWrapper"

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "MODEL": ("MODEL",),
        },
    } 
    
    def load_catvton_flux_lora(self, MODEL):

        load_device = mm.text_encoder_device()
        offload_device = mm.text_encoder_offload_device()

        print("Start loading LoRA weights")
        state_dict, _ = FluxFillPipeline.lora_state_dict(
            pretrained_model_name_or_path_or_dict="xiaozaa/catvton-flux-lora-alpha",     ## The tryon Lora weights
            weight_name="pytorch_lora_weights.safetensors",
            return_alphas=True
        )
        is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")
        
        print('Start converting the lora ...')
        lora_sd = convert_diffusers_flux_lora(state_dict, "")

        print('Start combining the model ...')
        state_dict = MODEL.model.diffusion_model.state_dict()
        for key, value in state_dict.items():
            if key in lora_sd:
                state_dict[key] += lora_sd[key].to(load_device)

        MODEL.model.diffusion_model.load_state_dict(state_dict)
        
        return (MODEL,)

class ModelPrinter:
    
    RETURN_TYPES = ("MODEL", )
    RETURN_NAMES = ("MODEL", )

    FUNCTION = "print_model"
    CATEGORY = "CatvtonFluxWrapper"

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "MODEL": ("MODEL",),
        },
    } 
    
    def print_model(self, MODEL):
        state_dict = MODEL.model.diffusion_model.state_dict()
        for key, value in state_dict.items():
            print(f"Key: {key}, Shape: {value.shape}")
        return (MODEL,)