File size: 6,483 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import numpy as np
from typing import Callable, Optional, List


def ordered_halving(val):
    bin_str = f"{val:064b}"
    bin_flip = bin_str[::-1]
    as_int = int(bin_flip, 2)

    return as_int / (1 << 64)

def does_window_roll_over(window: list[int], num_frames: int) -> tuple[bool, int]:
    prev_val = -1
    for i, val in enumerate(window):
        val = val % num_frames
        if val < prev_val:
            return True, i
        prev_val = val
    return False, -1

def shift_window_to_start(window: list[int], num_frames: int):
    start_val = window[0]
    for i in range(len(window)):
        # 1) subtract each element by start_val to move vals relative to the start of all frames
        # 2) add num_frames and take modulus to get adjusted vals
        window[i] = ((window[i] - start_val) + num_frames) % num_frames

def shift_window_to_end(window: list[int], num_frames: int):
    # 1) shift window to start
    shift_window_to_start(window, num_frames)
    end_val = window[-1]
    end_delta = num_frames - end_val - 1
    for i in range(len(window)):
        # 2) add end_delta to each val to slide windows to end
        window[i] = window[i] + end_delta

def get_missing_indexes(windows: list[list[int]], num_frames: int) -> list[int]:
    all_indexes = list(range(num_frames))
    for w in windows:
        for val in w:
            try:
                all_indexes.remove(val)
            except ValueError:
                pass
    return all_indexes

def uniform_looped(
    step: int = ...,
    num_steps: Optional[int] = None,
    num_frames: int = ...,
    context_size: Optional[int] = None,
    context_stride: int = 3,
    context_overlap: int = 4,
    closed_loop: bool = True,
):
    if num_frames <= context_size:
        yield list(range(num_frames))
        return

    context_stride = min(context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1)

    for context_step in 1 << np.arange(context_stride):
        pad = int(round(num_frames * ordered_halving(step)))
        for j in range(
            int(ordered_halving(step) * context_step) + pad,
            num_frames + pad + (0 if closed_loop else -context_overlap),
            (context_size * context_step - context_overlap),
        ):
            yield [e % num_frames for e in range(j, j + context_size * context_step, context_step)]

#from AnimateDiff-Evolved by Kosinkadink (https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved)
def uniform_standard(
    step: int = ...,
    num_steps: Optional[int] = None,
    num_frames: int = ...,
    context_size: Optional[int] = None,
    context_stride: int = 3,
    context_overlap: int = 4,
    closed_loop: bool = True,
):
    windows = []
    if num_frames <= context_size:
        windows.append(list(range(num_frames)))
        return windows

    context_stride = min(context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1)

    for context_step in 1 << np.arange(context_stride):
        pad = int(round(num_frames * ordered_halving(step)))
        for j in range(
            int(ordered_halving(step) * context_step) + pad,
            num_frames + pad + (0 if closed_loop else -context_overlap),
            (context_size * context_step - context_overlap),
        ):
            windows.append([e % num_frames for e in range(j, j + context_size * context_step, context_step)])

    # now that windows are created, shift any windows that loop, and delete duplicate windows
    delete_idxs = []
    win_i = 0
    while win_i < len(windows):
        # if window is rolls over itself, need to shift it
        is_roll, roll_idx = does_window_roll_over(windows[win_i], num_frames)
        if is_roll:
            roll_val = windows[win_i][roll_idx]  # roll_val might not be 0 for windows of higher strides
            shift_window_to_end(windows[win_i], num_frames=num_frames)
            # check if next window (cyclical) is missing roll_val
            if roll_val not in windows[(win_i+1) % len(windows)]:
                # need to insert new window here - just insert window starting at roll_val
                windows.insert(win_i+1, list(range(roll_val, roll_val + context_size)))
        # delete window if it's not unique
        for pre_i in range(0, win_i):
            if windows[win_i] == windows[pre_i]:
                delete_idxs.append(win_i)
                break
        win_i += 1

    # reverse delete_idxs so that they will be deleted in an order that doesn't break idx correlation
    delete_idxs.reverse()
    for i in delete_idxs:
        windows.pop(i)
    return windows

def static_standard(
    step: int = ...,
    num_steps: Optional[int] = None,
    num_frames: int = ...,
    context_size: Optional[int] = None,
    context_stride: int = 3,
    context_overlap: int = 4,
    closed_loop: bool = True,
):
    windows = []
    if num_frames <= context_size:
        windows.append(list(range(num_frames)))
        return windows
    # always return the same set of windows
    delta = context_size - context_overlap
    for start_idx in range(0, num_frames, delta):
        # if past the end of frames, move start_idx back to allow same context_length
        ending = start_idx + context_size
        if ending >= num_frames:
            final_delta = ending - num_frames
            final_start_idx = start_idx - final_delta
            windows.append(list(range(final_start_idx, final_start_idx + context_size)))
            break
        windows.append(list(range(start_idx, start_idx + context_size)))
    return windows

def get_context_scheduler(name: str) -> Callable:
    if name == "uniform_looped":
        return uniform_looped
    elif name == "uniform_standard":
        return uniform_standard
    elif name == "static_standard":
        return static_standard
    else:
        raise ValueError(f"Unknown context_overlap policy {name}")


def get_total_steps(
    scheduler,
    timesteps: List[int],
    num_steps: Optional[int] = None,
    num_frames: int = ...,
    context_size: Optional[int] = None,
    context_stride: int = 3,
    context_overlap: int = 4,
    closed_loop: bool = True,
):
    return sum(
        len(
            list(
                scheduler(
                    i,
                    num_steps,
                    num_frames,
                    context_size,
                    context_stride,
                    context_overlap,
                )
            )
        )
        for i in range(len(timesteps))
    )