File size: 6,117 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# https://github.com/MinusZoneAI/ComfyUI-CogVideoX-MZ/blob/9616415220fd09388622f40f6609e4ed81f048a5/mz_gguf_loader.py

import torch
import torch.nn as nn
import gc


class quantize_lazy_load():
    def __init__(self):
        self.device = None

    def __enter__(self):
        self.device = torch.device("meta")
        self.device.__enter__()
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.device.__exit__(exc_type, exc_value, traceback)


def quantize_load_state_dict(model, state_dict, device="cpu"):
    quant_keys = []
    for key in state_dict.keys():
        if key.endswith(".Q4_0_qweight"):
            quant_keys.append(key.replace(".Q4_0_qweight", ""))
            qtype = "Q4_0"
        elif key.endswith(".Q8_0_qweight"):
            quant_keys.append(key.replace(".Q8_0_qweight", ""))
            qtype = "Q8_0"

    for name, module in model.named_modules():
        if name in quant_keys:
            q_linear = WQLinear_GGUF.from_linear(
                linear=module,
                device=device,
                qtype=qtype,
            )
            set_op_by_name(model, name, q_linear)

    model.to_empty(device=device)
    model.load_state_dict(state_dict, strict=False)
    model.to(device)
    return model


def set_op_by_name(layer, name, new_module):
    levels = name.split(".")
    if len(levels) > 1:
        mod_ = layer
        for l_idx in range(len(levels) - 1):
            if levels[l_idx].isdigit():
                mod_ = mod_[int(levels[l_idx])]
            else:
                mod_ = getattr(mod_, levels[l_idx])
        setattr(mod_, levels[-1], new_module)
    else:
        setattr(layer, name, new_module)


import torch.nn.functional as F


class WQLinear_GGUF(nn.Module):
    def __init__(
        self, in_features, out_features, bias, dev, qtype="Q4_0"
    ):
        super().__init__()

        self.in_features = in_features
        self.out_features = out_features
        self.qtype = qtype

        qweight_shape = quant_shape_to_byte_shape(
            (out_features, in_features), qtype
        )
        self.register_buffer(
            f"{qtype}_qweight",
            torch.zeros(
                qweight_shape,
                dtype=torch.uint8,
                device=dev,
            ),
        )
        if bias:
            self.register_buffer(
                "bias",
                torch.zeros(
                    (out_features),
                    dtype=torch.float16,
                    device=dev,
                ),
            )
        else:
            self.bias = None

    @classmethod
    def from_linear(
        cls, linear,
        device="cpu",
        qtype="Q4_0",
    ):
        q_linear = cls(
            linear.in_features,
            linear.out_features,
            linear.bias is not None,
            device,
            qtype=qtype,
        )
        return q_linear

    def extra_repr(self) -> str:
        return (
            "in_features={}, out_features={}, bias={}, w_bit={}, group_size={}".format(
                self.in_features,
                self.out_features,
                self.bias is not None,
                self.w_bit,
                self.group_size,
            )
        )

    @torch.no_grad()
    def forward(self, x):
        if self.qtype == "Q4_0":
            dequant = dequantize_blocks_Q4_0(self.Q4_0_qweight, x.dtype)
        elif self.qtype == "Q8_0":
            dequant = dequantize_blocks_Q8_0(self.Q8_0_qweight, x.dtype)
        else:
            raise ValueError(f"Unknown qtype: {self.qtype}")
        
        return F.linear(x, dequant, bias=self.bias.to(x.dtype) if self.bias is not None else None)


def split_block_dims(blocks, *args):
    n_max = blocks.shape[1]
    dims = list(args) + [n_max - sum(args)]
    return torch.split(blocks, dims, dim=1)


def quant_shape_to_byte_shape(shape, qtype) -> tuple[int, ...]:
    # shape = shape[::-1]
    block_size, type_size = GGML_QUANT_SIZES[qtype]
    if shape[-1] % block_size != 0:
        raise ValueError(
            f"Quantized tensor row size ({shape[-1]}) is not a multiple of Q4_0 block size ({block_size})")
    return (*shape[:-1], shape[-1] // block_size * type_size)


def quant_shape_from_byte_shape(shape, qtype) -> tuple[int, ...]:
    # shape = shape[::-1]
    block_size, type_size = GGML_QUANT_SIZES[qtype]
    if shape[-1] % type_size != 0:
        raise ValueError(
            f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of Q4_0 type size ({type_size})")
    return (*shape[:-1], shape[-1] // type_size * block_size)


GGML_QUANT_SIZES = {
    "Q4_0": (32, 2 + 16),
    "Q8_0": (32, 2 + 32),
}


def dequantize_blocks_Q4_0(data, dtype=torch.float16):
    block_size, type_size = GGML_QUANT_SIZES["Q4_0"]

    data = data.to(torch.uint8)
    shape = data.shape

    rows = data.reshape(
        (-1, data.shape[-1])
    ).view(torch.uint8)

    n_blocks = rows.numel() // type_size
    blocks = data.reshape((n_blocks, type_size))

    n_blocks = blocks.shape[0]

    d, qs = split_block_dims(blocks, 2)
    d = d.view(torch.float16)

    qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor(
        [0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
    qs = (qs & 0x0F).reshape((n_blocks, -1)).to(torch.int8) - 8

    out = (d * qs)

    out = out.reshape(quant_shape_from_byte_shape(
        shape,
        qtype="Q4_0",
    )).to(dtype)
    return out

def dequantize_blocks_Q8_0(data, dtype=torch.float16):
    block_size, type_size = GGML_QUANT_SIZES["Q8_0"]

    data = data.to(torch.uint8)
    shape = data.shape

    rows = data.reshape(
        (-1, data.shape[-1])
    ).view(torch.uint8)

    n_blocks = rows.numel() // type_size
    blocks = data.reshape((n_blocks, type_size))

    n_blocks = blocks.shape[0]

    d, qs = split_block_dims(blocks, 2)
    d = d.view(torch.float16).to(torch.float32)

    qs = qs.view(torch.int8).to(torch.float32)

    out = (d * qs)

    out = out.reshape(quant_shape_from_byte_shape(
        shape,
        qtype="Q8_0",
    )).to(dtype)
    return out