File size: 3,603 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import json
import torch
from deepdiff import DeepDiff
from ..core import CONFIG, logger


# just a helper function to set the widget values (or clear them)
def setWidgetValues(value=None, unique_id=None, extra_pnginfo=None) -> None:
    if unique_id and extra_pnginfo:
        workflow = extra_pnginfo["workflow"]
        node = next((x for x in workflow["nodes"] if str(x["id"]) == unique_id), None)

        if node:
            node["widgets_values"] = value

    return None


# find difference between two jsons
def findJsonStrDiff(json1, json2):
    msgError = "Could not compare jsons"
    returnJson = {"error": msgError}
    try:
        # TODO review this
        # dict1 = json.loads(json1)
        # dict2 = json.loads(json2)

        returnJson = findJsonsDiff(json1, json2)

        returnJson = json.dumps(returnJson, indent=CONFIG["indent"])
    except Exception as e:
        logger.warn(f"{msgError}: {e}")

    return returnJson


def findJsonsDiff(json1, json2):
    msgError = "Could not compare jsons"
    returnJson = {"error": msgError}

    try:
        diff = DeepDiff(json1, json2, ignore_order=True, verbose_level=2)

        returnJson = {k: v for k, v in diff.items() if
                   k in ('dictionary_item_added', 'dictionary_item_removed', 'values_changed')}

        # just for print "values_changed" at first
        returnJson = dict(reversed(returnJson.items()))

    except Exception as e:
        logger.warn(f"{msgError}: {e}")

    return returnJson


# powered by:
# https://github.com/WASasquatch/was-node-suite-comfyui/blob/main/WAS_Node_Suite.py
# class: WAS_Samples_Passthrough_Stat_System
def get_system_stats():
    import psutil

    # RAM
    ram = psutil.virtual_memory()
    ram_used = ram.used / (1024 ** 3)
    ram_total = ram.total / (1024 ** 3)
    ram_stats = f"Used RAM: {ram_used:.2f} GB / Total RAM: {ram_total:.2f} GB"

    # VRAM (with PyTorch)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    vram_used = torch.cuda.memory_allocated(device) / (1024 ** 3)
    vram_total = torch.cuda.get_device_properties(device).total_memory / (1024 ** 3)
    vram_stats = f"Used VRAM: {vram_used:.2f} GB / Total VRAM: {vram_total:.2f} GB"

    # Hard Drive Space
    hard_drive = psutil.disk_usage("/")
    used_space = hard_drive.used / (1024 ** 3)
    total_space = hard_drive.total / (1024 ** 3)
    hard_drive_stats = f"Used Space: {used_space:.2f} GB / Total Space: {total_space:.2f} GB"

    return [ram_stats, vram_stats, hard_drive_stats]


# return x and y resolution of an image (torch tensor)
def getResolutionByTensor(image=None) -> dict:
    res = {"x": 0, "y": 0}

    if image is not None:
        img = image.movedim(-1, 1)

        res["x"] = img.shape[3]
        res["y"] = img.shape[2]

    return res


# by https://stackoverflow.com/questions/6080477/how-to-get-the-size-of-tar-gz-in-mb-file-in-python
def get_size(path):
    size = os.path.getsize(path)
    if size < 1024:
        return f"{size} bytes"
    elif size < pow(1024, 2):
        return f"{round(size / 1024, 2)} KB"
    elif size < pow(1024, 3):
        return f"{round(size / (pow(1024, 2)), 2)} MB"
    elif size < pow(1024, 4):
        return f"{round(size / (pow(1024, 3)), 2)} GB"


def get_nested_value(data, dotted_key, default=None):
  keys = dotted_key.split('.')
  for key in keys:
    if isinstance(data, dict) and key in data:
      data = data[key]
    else:
      return default
  return data