File size: 16,070 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
# Based on the concept from https://github.com/muerrilla/sd-webui-detail-daemon
from __future__ import annotations
import io
import matplotlib.pyplot as plt
import numpy as np
import torch
from comfy.samplers import KSAMPLER
from PIL import Image
import folder_paths
import random
import os
# Schedule creation function from https://github.com/muerrilla/sd-webui-detail-daemon
def make_detail_daemon_schedule(
steps,
start,
end,
bias,
amount,
exponent,
start_offset,
end_offset,
fade,
smooth,
):
start = min(start, end)
mid = start + bias * (end - start)
multipliers = np.zeros(steps)
start_idx, mid_idx, end_idx = [
int(round(x * (steps - 1))) for x in [start, mid, end]
]
start_values = np.linspace(0, 1, mid_idx - start_idx + 1)
if smooth:
start_values = 0.5 * (1 - np.cos(start_values * np.pi))
start_values = start_values**exponent
if start_values.any():
start_values *= amount - start_offset
start_values += start_offset
end_values = np.linspace(1, 0, end_idx - mid_idx + 1)
if smooth:
end_values = 0.5 * (1 - np.cos(end_values * np.pi))
end_values = end_values**exponent
if end_values.any():
end_values *= amount - end_offset
end_values += end_offset
multipliers[start_idx : mid_idx + 1] = start_values
multipliers[mid_idx : end_idx + 1] = end_values
multipliers[:start_idx] = start_offset
multipliers[end_idx + 1 :] = end_offset
multipliers *= 1 - fade
return multipliers
class DetailDaemonGraphSigmasNode:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"sigmas": ("SIGMAS", {"forceInput": True}),
"detail_amount": (
"FLOAT",
{"default": 0.1, "min": -5.0, "max": 5.0, "step": 0.01},
),
"start": (
"FLOAT",
{"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01},
),
"end": (
"FLOAT",
{"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01},
),
"bias": (
"FLOAT",
{"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01},
),
"exponent": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.05},
),
"start_offset": (
"FLOAT",
{"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.01},
),
"end_offset": (
"FLOAT",
{"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.01},
),
"fade": (
"FLOAT",
{"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05},
),
"smooth": ("BOOLEAN", {"default": True}),
"cfg_scale": (
"FLOAT",
{
"default": 1.0,
"min": 0.0,
"max": 100.0,
"step": 0.5,
"round": 0.01,
},
),
},
}
RETURN_TYPES = ()
OUTPUT_NODE = True
CATEGORY = "sampling/custom_sampling/sigmas"
FUNCTION = "make_graph"
def make_graph(
self,
sigmas,
detail_amount,
start,
end,
bias,
exponent,
start_offset,
end_offset,
fade,
smooth,
cfg_scale,
):
# Create a copy of the input sigmas using clone() for tensors to avoid modifying the original
sigmas = sigmas.clone()
# Derive the number of steps from the length of sigmas minus 1 (ignore the final sigma)
steps = len(sigmas) - 1 # 21 sigmas, 20 steps
actual_steps = steps
# Create the schedule using the number of steps
schedule = make_detail_daemon_schedule(
actual_steps,
start,
end,
bias,
detail_amount,
exponent,
start_offset,
end_offset,
fade,
smooth,
)
# Debugging: print schedule and sigmas lengths to verify alignment
print(
f"Number of sigmas: {len(sigmas)}, Number of schedule steps: {len(schedule)}",
)
# Iterate over the sigmas, except for the last one (which we assume is 0 and leave untouched)
for idx in range(steps):
multiplier = schedule[idx] * 0.1
# Debugging: print each index and sigma to track what's being adjusted
print(f"Adjusting sigma at index {idx} with multiplier {multiplier}")
sigmas[idx] *= (
1 - multiplier * cfg_scale
) # Adjust each sigma in "both" mode
# Create the plot for visualization
image = self.plot_schedule(schedule)
# Save temp image
output_dir = folder_paths.get_temp_directory()
prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
full_output_folder, filename, counter, subfolder, _ = (
folder_paths.get_save_image_path(prefix_append, output_dir)
)
filename = f"{filename}_{counter:05}_.png"
file_path = os.path.join(full_output_folder, filename)
image.save(file_path, compress_level=1)
return {
"ui": {
"images": [
{"filename": filename, "subfolder": subfolder, "type": "temp"},
],
}
}
@staticmethod
def plot_schedule(schedule) -> Image:
plt.figure(figsize=(6, 4)) # Adjusted width
plt.plot(schedule, label="Sigma Adjustment Curve")
plt.xlabel("Steps")
plt.ylabel("Multiplier (*10)")
plt.title("Detail Adjustment Schedule")
plt.legend()
plt.grid(True)
plt.xticks(range(len(schedule)))
plt.ylim(-1, 1)
# Use tight_layout or subplots_adjust
plt.tight_layout()
# Or manually adjust if needed:
# plt.subplots_adjust(left=0.2)
buf = io.BytesIO()
plt.savefig(buf, format="PNG")
plt.close()
buf.seek(0)
image = Image.open(buf)
return image
def get_dd_schedule(
sigma: float,
sigmas: torch.Tensor,
dd_schedule: torch.Tensor,
) -> float:
sched_len = len(dd_schedule)
if (
sched_len < 2
or len(sigmas) < 2
or sigma <= 0
or not (sigmas[-1] <= sigma <= sigmas[0])
):
return 0.0
# First, we find the index of the closest sigma in the list to what the model was
# called with.
deltas = (sigmas[:-1] - sigma).abs()
idx = int(deltas.argmin())
if (
(idx == 0 and sigma >= sigmas[0])
or (idx == sched_len - 1 and sigma <= sigmas[-2])
or deltas[idx] == 0
):
# Either exact match or closest to head/tail of the DD schedule so we
# can't interpolate to another schedule item.
return dd_schedule[idx].item()
# If we're here, that means the sigma is in between two sigmas in the
# list.
idxlow, idxhigh = (idx, idx - 1) if sigma > sigmas[idx] else (idx + 1, idx)
# We find the low/high neighbor sigmas - our sigma is somewhere between them.
nlow, nhigh = sigmas[idxlow], sigmas[idxhigh]
if nhigh - nlow == 0:
# Shouldn't be possible, but just in case... Avoid divide by zero.
return dd_schedule[idxlow]
# Ratio of how close we are to the high neighbor.
ratio = ((sigma - nlow) / (nhigh - nlow)).clamp(0, 1)
# Mix the DD schedule high/low items according to the ratio.
return torch.lerp(dd_schedule[idxlow], dd_schedule[idxhigh], ratio).item()
def detail_daemon_sampler(
model: object,
x: torch.Tensor,
sigmas: torch.Tensor,
*,
dds_wrapped_sampler: object,
dds_make_schedule: callable,
dds_cfg_scale_override: float,
**kwargs: dict,
) -> torch.Tensor:
if dds_cfg_scale_override > 0:
cfg_scale = dds_cfg_scale_override
else:
maybe_cfg_scale = getattr(model.inner_model, "cfg", None)
cfg_scale = (
float(maybe_cfg_scale) if isinstance(maybe_cfg_scale, (int, float)) else 1.0
)
dd_schedule = torch.tensor(
dds_make_schedule(len(sigmas) - 1),
dtype=torch.float32,
device="cpu",
)
sigmas_cpu = sigmas.detach().clone().cpu()
sigma_max, sigma_min = float(sigmas_cpu[0]), float(sigmas_cpu[-1]) + 1e-05
def model_wrapper(x: torch.Tensor, sigma: torch.Tensor, **extra_args: dict):
sigma_float = float(sigma.max().detach().cpu())
if not (sigma_min <= sigma_float <= sigma_max):
return model(x, sigma, **extra_args)
dd_adjustment = get_dd_schedule(sigma_float, sigmas_cpu, dd_schedule) * 0.1
adjusted_sigma = sigma * max(1e-06, 1.0 - dd_adjustment * cfg_scale)
return model(x, adjusted_sigma, **extra_args)
for k in (
"inner_model",
"sigmas",
):
if hasattr(model, k):
setattr(model_wrapper, k, getattr(model, k))
return dds_wrapped_sampler.sampler_function(
model_wrapper,
x,
sigmas,
**kwargs,
**dds_wrapped_sampler.extra_options,
)
class DetailDaemonSamplerNode:
DESCRIPTION = "This sampler wrapper works by adjusting the sigma passed to the model, while the rest of sampling stays the same."
CATEGORY = "sampling/custom_sampling/samplers"
RETURN_TYPES = ("SAMPLER",)
FUNCTION = "go"
@classmethod
def INPUT_TYPES(cls) -> dict:
return {
"required": {
"sampler": ("SAMPLER",),
"detail_amount": (
"FLOAT",
{"default": 0.1, "min": -5.0, "max": 5.0, "step": 0.01},
),
"start": (
"FLOAT",
{"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01},
),
"end": (
"FLOAT",
{"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01},
),
"bias": (
"FLOAT",
{"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01},
),
"exponent": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.05},
),
"start_offset": (
"FLOAT",
{"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.01},
),
"end_offset": (
"FLOAT",
{"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.01},
),
"fade": (
"FLOAT",
{"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05},
),
"smooth": ("BOOLEAN", {"default": True}),
"cfg_scale_override": (
"FLOAT",
{
"default": 0,
"min": 0.0,
"max": 100.0,
"step": 0.5,
"round": 0.01,
"tooltip": "If set to 0, the sampler will automatically determine the CFG scale (if possible). Set to some other value to override.",
},
),
},
}
@classmethod
def go(
cls,
sampler: object,
*,
detail_amount,
start,
end,
bias,
exponent,
start_offset,
end_offset,
fade,
smooth,
cfg_scale_override,
) -> tuple:
def dds_make_schedule(steps):
return make_detail_daemon_schedule(
steps,
start,
end,
bias,
detail_amount,
exponent,
start_offset,
end_offset,
fade,
smooth,
)
return (
KSAMPLER(
detail_daemon_sampler,
extra_options={
"dds_wrapped_sampler": sampler,
"dds_make_schedule": dds_make_schedule,
"dds_cfg_scale_override": cfg_scale_override,
},
),
)
#MultiplySigmas Node
class MultiplySigmas:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sigmas": ("SIGMAS", {"forceInput": True}),
"factor": ("FLOAT", {"default": 1, "min": 0, "max": 100, "step": 0.001}),
"start": ("FLOAT", {"default": 0, "min": 0, "max": 1, "step": 0.001}),
"end": ("FLOAT", {"default": 1, "min": 0, "max": 1, "step": 0.001})
}
}
FUNCTION = "simple_output"
RETURN_TYPES = ("SIGMAS",)
CATEGORY = "sampling/custom_sampling/sigmas"
def simple_output(self, sigmas, factor, start, end):
# Clone the sigmas to ensure the input is not modified (stateless)
sigmas = sigmas.clone()
total_sigmas = len(sigmas)
start_idx = int(start * total_sigmas)
end_idx = int(end * total_sigmas)
for i in range(start_idx, end_idx):
sigmas[i] *= factor
return (sigmas,)
#LyingSigmaSampler
def lying_sigma_sampler(
model,
x,
sigmas,
*,
lss_wrapped_sampler,
lss_dishonesty_factor,
lss_startend_percent,
**kwargs,
):
start_percent, end_percent = lss_startend_percent
ms = model.inner_model.inner_model.model_sampling
start_sigma, end_sigma = (
round(ms.percent_to_sigma(start_percent), 4),
round(ms.percent_to_sigma(end_percent), 4),
)
del ms
def model_wrapper(x, sigma, **extra_args):
sigma_float = float(sigma.max().detach().cpu())
if end_sigma <= sigma_float <= start_sigma:
sigma = sigma * (1.0 + lss_dishonesty_factor)
return model(x, sigma, **extra_args)
for k in (
"inner_model",
"sigmas",
):
if hasattr(model, k):
setattr(model_wrapper, k, getattr(model, k))
return lss_wrapped_sampler.sampler_function(
model_wrapper,
x,
sigmas,
**kwargs,
**lss_wrapped_sampler.extra_options,
)
class LyingSigmaSamplerNode:
CATEGORY = "sampling/custom_sampling"
RETURN_TYPES = ("SAMPLER",)
FUNCTION = "go"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"sampler": ("SAMPLER",),
"dishonesty_factor": (
"FLOAT",
{
"default": -0.05,
"min": -0.999,
"step": 0.01,
"tooltip": "Multiplier for sigmas passed to the model. -0.05 means we reduce the sigma by 5%.",
},
),
},
"optional": {
"start_percent": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.01}),
"end_percent": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
@classmethod
def go(cls, sampler, dishonesty_factor, *, start_percent=0.0, end_percent=1.0):
return (
KSAMPLER(
lying_sigma_sampler,
extra_options={
"lss_wrapped_sampler": sampler,
"lss_dishonesty_factor": dishonesty_factor,
"lss_startend_percent": (start_percent, end_percent),
},
),
)
|