File size: 6,725 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#credit to comfyanonymous for this module
#from https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4
import comfy.ops
import torch
import folder_paths
from ..libs.utils import install_package

try:
    from bitsandbytes.nn.modules import Params4bit, QuantState
except ImportError:
    Params4bit = torch.nn.Parameter
    raise ImportError("Please install bitsandbytes>=0.43.3")

def functional_linear_4bits(x, weight, bias):
    try:
        install_package("bitsandbytes", "0.43.3", True, "0.43.3")
        import bitsandbytes as bnb
    except ImportError:
        raise ImportError("Please install bitsandbytes>=0.43.3")

    out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state)
    out = out.to(x)
    return out


def copy_quant_state(state, device: torch.device = None):
    if state is None:
        return None

    device = device or state.absmax.device

    state2 = (
        QuantState(
            absmax=state.state2.absmax.to(device),
            shape=state.state2.shape,
            code=state.state2.code.to(device),
            blocksize=state.state2.blocksize,
            quant_type=state.state2.quant_type,
            dtype=state.state2.dtype,
        )
        if state.nested
        else None
    )

    return QuantState(
        absmax=state.absmax.to(device),
        shape=state.shape,
        code=state.code.to(device),
        blocksize=state.blocksize,
        quant_type=state.quant_type,
        dtype=state.dtype,
        offset=state.offset.to(device) if state.nested else None,
        state2=state2,
    )


class ForgeParams4bit(Params4bit):

    def to(self, *args, **kwargs):
        device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
        if device is not None and device.type == "cuda" and not self.bnb_quantized:
            return self._quantize(device)
        else:
            n = ForgeParams4bit(
                torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking),
                requires_grad=self.requires_grad,
                quant_state=copy_quant_state(self.quant_state, device),
                blocksize=self.blocksize,
                compress_statistics=self.compress_statistics,
                quant_type=self.quant_type,
                quant_storage=self.quant_storage,
                bnb_quantized=self.bnb_quantized,
                module=self.module
            )
            self.module.quant_state = n.quant_state
            self.data = n.data
            self.quant_state = n.quant_state
            return n

class ForgeLoader4Bit(torch.nn.Module):
    def __init__(self, *, device, dtype, quant_type, **kwargs):
        super().__init__()
        self.dummy = torch.nn.Parameter(torch.empty(1, device=device, dtype=dtype))
        self.weight = None
        self.quant_state = None
        self.bias = None
        self.quant_type = quant_type

    def _save_to_state_dict(self, destination, prefix, keep_vars):
        super()._save_to_state_dict(destination, prefix, keep_vars)
        quant_state = getattr(self.weight, "quant_state", None)
        if quant_state is not None:
            for k, v in quant_state.as_dict(packed=True).items():
                destination[prefix + "weight." + k] = v if keep_vars else v.detach()
        return

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        quant_state_keys = {k[len(prefix + "weight."):] for k in state_dict.keys() if k.startswith(prefix + "weight.")}

        if any('bitsandbytes' in k for k in quant_state_keys):
            quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys}

            self.weight = ForgeParams4bit().from_prequantized(
                data=state_dict[prefix + 'weight'],
                quantized_stats=quant_state_dict,
                requires_grad=False,
                device=self.dummy.device,
                module=self
            )
            self.quant_state = self.weight.quant_state

            if prefix + 'bias' in state_dict:
                self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))

            del self.dummy
        elif hasattr(self, 'dummy'):
            if prefix + 'weight' in state_dict:
                self.weight = ForgeParams4bit(
                    state_dict[prefix + 'weight'].to(self.dummy),
                    requires_grad=False,
                    compress_statistics=True,
                    quant_type=self.quant_type,
                    quant_storage=torch.uint8,
                    module=self,
                )
                self.quant_state = self.weight.quant_state

            if prefix + 'bias' in state_dict:
                self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))

            del self.dummy
        else:
            super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)

current_device = None
current_dtype = None
current_manual_cast_enabled = False
current_bnb_dtype = None

class OPS(comfy.ops.manual_cast):
    class Linear(ForgeLoader4Bit):
        def __init__(self, *args, device=None, dtype=None, **kwargs):
            super().__init__(device=device, dtype=dtype, quant_type=current_bnb_dtype)
            self.parameters_manual_cast = current_manual_cast_enabled

        def forward(self, x):
            self.weight.quant_state = self.quant_state

            if self.bias is not None and self.bias.dtype != x.dtype:
                # Maybe this can also be set to all non-bnb ops since the cost is very low.
                # And it only invokes one time, and most linear does not have bias
                self.bias.data = self.bias.data.to(x.dtype)

            if not self.parameters_manual_cast:
                return functional_linear_4bits(x, self.weight, self.bias)
            elif not self.weight.bnb_quantized:
                assert x.device.type == 'cuda', 'BNB Must Use CUDA as Computation Device!'
                layer_original_device = self.weight.device
                self.weight = self.weight._quantize(x.device)
                bias = self.bias.to(x.device) if self.bias is not None else None
                out = functional_linear_4bits(x, self.weight, bias)
                self.weight = self.weight.to(layer_original_device)
                return out
            else:
                weight, bias, signal = weights_manual_cast(self, x, skip_weight_dtype=True, skip_bias_dtype=True)
                with main_stream_worker(weight, bias, signal):
                    return functional_linear_4bits(x, weight, bias)