File size: 13,380 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
#credit to ExponentialML for this module
#from https://github.com/ExponentialML/ComfyUI_Native_DynamiCrafter
import os
import torch
import comfy
from einops import rearrange
from comfy import model_base, model_management
from .lvdm.modules.networks.openaimodel3d import UNetModel as DynamiCrafterUNetModel
from .utils.model_utils import DynamiCrafterBase, DYNAMICRAFTER_CONFIG, load_image_proj_dict, load_dynamicrafter_dict, get_image_proj_model
class DynamiCrafter:
def __init__(self):
self.model_patcher = None
# There is probably a better way to do this, but with the apply_model callback, this seems necessary.
# The model gets wrapped around a CFG Denoiser class, and handles the conditioning parts there.
# We cannot access it, so we must find the conditioning according to how ComfyUI handles it.
def get_conditioning_pair(self, c_crossattn, use_cfg: bool):
if not use_cfg:
return c_crossattn
conditioning_group = []
for i in range(c_crossattn.shape[0]):
# Get the positive and negative conditioning.
positive_idx = i + 1
negative_idx = i
if positive_idx >= c_crossattn.shape[0]:
break
if not torch.equal(c_crossattn[[positive_idx]], c_crossattn[[negative_idx]]):
conditioning_group = [
c_crossattn[[positive_idx]],
c_crossattn[[negative_idx]]
]
break
if len(conditioning_group) == 0:
raise ValueError("Could not get the appropriate conditioning group.")
return torch.cat(conditioning_group)
# apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}
def _forward(self, *args):
transformer_options = self.model_patcher.model_options['transformer_options']
conditioning = transformer_options['conditioning']
apply_model = args[0]
# forward_dict
fd = args[1]
x, t, model_in_kwargs, _ = fd['input'], fd['timestep'], fd['c'], fd['cond_or_uncond']
c_crossattn = model_in_kwargs.pop("c_crossattn")
c_concat = conditioning['c_concat']
num_video_frames = conditioning['num_video_frames']
fs = conditioning['fs']
original_num_frames = num_video_frames
# Better way to determine if we're using CFG
# The cond batch will always be num_frames >= 2 since we're doing video,
# so we need get this condition differently here.
if x.shape[0] > num_video_frames:
num_video_frames *= 2
batch_size = 2
use_cfg = True
else:
use_cfg = False
batch_size = 1
if use_cfg:
c_concat = torch.cat([c_concat] * 2)
self.validate_forwardable_latent(x, c_concat, num_video_frames, use_cfg)
x_in, c_concat = map(lambda xc: rearrange(xc, '(b t) c h w -> b c t h w', b=batch_size), (x, c_concat))
# We always assume video, so there will always be batched conditionings.
c_crossattn = self.get_conditioning_pair(c_crossattn, use_cfg)
c_crossattn = c_crossattn[:2] if use_cfg else c_crossattn[:1]
context_in = c_crossattn
img_embs = conditioning['image_emb']
if use_cfg:
img_emb_uncond = conditioning['image_emb_uncond']
img_embs = torch.cat([img_embs, img_emb_uncond])
fs = torch.cat([fs] * x_in.shape[0])
outs = []
for i in range(batch_size):
model_in_kwargs['transformer_options']['cond_idx'] = i
x_out = apply_model(
x_in[[i]],
t=torch.cat([t[:1]]),
context_in=context_in[[i]],
c_crossattn=c_crossattn,
cc_concat=c_concat[[i]], # "cc" is to handle naming conflict with apply_model wrapper.
# We want to handle this in the UNet forward.
num_video_frames=num_video_frames // 2 if batch_size > 1 else num_video_frames,
img_emb=img_embs[[i]],
fs=fs[[i]],
**model_in_kwargs
)
outs.append(x_out)
x_out = torch.cat(list(reversed(outs)))
x_out = rearrange(x_out, 'b c t h w -> (b t) c h w')
return x_out
def assign_forward_args(
self,
model,
c_concat,
image_emb,
image_emb_uncond,
fs,
frames,
):
model.model_options['transformer_options']['conditioning'] = {
"c_concat": c_concat,
"image_emb": image_emb,
'image_emb_uncond': image_emb_uncond,
"fs": fs,
"num_video_frames": frames,
}
def validate_forwardable_latent(self, latent, c_concat, num_video_frames, use_cfg):
check_no_cfg = latent.shape[0] != num_video_frames
check_with_cfg = latent.shape[0] != (num_video_frames * 2)
latent_batch_size = latent.shape[0] if not use_cfg else latent.shape[0] // 2
num_frames = num_video_frames if not use_cfg else num_video_frames // 2
if all([check_no_cfg, check_with_cfg]):
raise ValueError(
"Please make sure your latent inputs match the number of frames in the DynamiCrafter Processor."
f"Got a latent batch size of ({latent_batch_size}) with number of frames being ({num_frames})."
)
latent_h, latent_w = latent.shape[-2:]
c_concat_h, c_concat_w = c_concat.shape[-2:]
if not all([latent_h == c_concat_h, latent_w == c_concat_w]):
raise ValueError(
"Please make sure that your input latent and image frames are the same height and width.",
f"Image Size: {c_concat_w * 8}, {c_concat_h * 8}, Latent Size: {latent_h * 8}, {latent_w * 8}"
)
def process_image_conditioning(
self,
model,
clip_vision,
vae,
image_proj_model,
images,
use_interpolate,
fps: int,
frames: int,
scale_latents: bool
):
self.model_patcher = model
encoded_latent = vae.encode(images[:, :, :, :3])
encoded_image = clip_vision.encode_image(images[:1])['last_hidden_state']
image_emb = image_proj_model(encoded_image)
encoded_image_uncond = clip_vision.encode_image(torch.zeros_like(images)[:1])['last_hidden_state']
image_emb_uncond = image_proj_model(encoded_image_uncond)
c_concat = encoded_latent
if scale_latents:
vae_process_input = vae.process_input
vae.process_input = lambda image: (image - .5) * 2
c_concat = vae.encode(images[:, :, :, :3])
vae.process_input = vae_process_input
c_concat = model.model.process_latent_in(c_concat) * 1.3
else:
c_concat = model.model.process_latent_in(c_concat)
fs = torch.tensor([fps], dtype=torch.long, device=model_management.intermediate_device())
model.set_model_unet_function_wrapper(self._forward)
used_interpolate_processing = False
if use_interpolate and frames > 16:
raise ValueError(
"When using interpolation mode, the maximum amount of frames are 16."
"If you're doing long video generation, consider using the last frame\
from the first generation for the next one (autoregressive)."
)
if encoded_latent.shape[0] == 1:
c_concat = torch.cat([c_concat] * frames, dim=0)[:frames]
if use_interpolate:
mask = torch.zeros_like(c_concat)
mask[:1] = c_concat[:1]
c_concat = mask
used_interpolate_processing = True
else:
if use_interpolate and c_concat.shape[0] in [2, 3]:
input_frame_count = c_concat.shape[0]
# We're just padding to the same type an size of the concat
masked_frames = torch.zeros_like(torch.cat([c_concat[:1]] * frames))[:frames]
# Start frame
masked_frames[:1] = c_concat[:1]
end_frame_idx = -1
# TODO
speed = 1.0
if speed < 1.0:
possible_speeds = list(torch.linspace(0, 1.0, c_concat.shape[0]))
speed_from_frames = enumerate(possible_speeds)
speed_idx = min(speed_from_frames, key=lambda n: n[1] - speed)[0]
end_frame_idx = speed_idx
# End frame
masked_frames[-1:] = c_concat[[end_frame_idx]]
# Possible middle frame, but not working at the moment.
if input_frame_count == 3:
middle_idx = masked_frames.shape[0] // 2
middle_idx_frame = c_concat.shape[0] // 2
masked_frames[[middle_idx]] = c_concat[[middle_idx_frame]]
c_concat = masked_frames
used_interpolate_processing = True
print(f"Using interpolation mode with {input_frame_count} frames.")
if c_concat.shape[0] < frames and not used_interpolate_processing:
print(
"Multiple images found, but interpolation mode is unset. Using the first frame as condition.",
)
c_concat = torch.cat([c_concat[:1]] * frames)
c_concat = c_concat[:frames]
if encoded_latent.shape[0] == 1:
encoded_latent = torch.cat([encoded_latent] * frames)[:frames]
if encoded_latent.shape[0] < frames and encoded_latent.shape[0] != 1:
encoded_latent = torch.cat(
[encoded_latent] + [encoded_latent[-1:]] * abs(encoded_latent.shape[0] - frames)
)[:frames]
# We could store this as a state in this Node Class Instance, but to prevent any weird edge cases,
# this should always be passed through the 'stateless' way, and let ComfyUI handle the transformer_options state.
self.assign_forward_args(model, c_concat, image_emb, image_emb_uncond, fs, frames)
return (model, {"samples": torch.zeros_like(c_concat)}, {"samples": encoded_latent},)
# Loader for the DynamiCrafter model.
def load_model_sicts(self, model_path: str):
model_state_dict = comfy.utils.load_torch_file(model_path)
dynamicrafter_dict = load_dynamicrafter_dict(model_state_dict)
image_proj_dict = load_image_proj_dict(model_state_dict)
return dynamicrafter_dict, image_proj_dict
def get_prediction_type(self, is_eps: bool, model_config):
if not is_eps and "image_cross_attention_scale_learnable" in model_config.unet_config.keys():
model_config.unet_config["image_cross_attention_scale_learnable"] = False
return model_base.ModelType.EPS if is_eps else model_base.ModelType.V_PREDICTION
def handle_model_management(self, dynamicrafter_dict: dict, model_config):
parameters = comfy.utils.calculate_parameters(dynamicrafter_dict, "model.diffusion_model.")
load_device = model_management.get_torch_device()
unet_dtype = model_management.unet_dtype(
model_params=parameters,
supported_dtypes=model_config.supported_inference_dtypes
)
manual_cast_dtype = model_management.unet_manual_cast(
unet_dtype,
load_device,
model_config.supported_inference_dtypes
)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
offload_device = model_management.unet_offload_device()
return load_device, inital_load_device
def check_leftover_keys(self, state_dict: dict):
left_over = state_dict.keys()
if len(left_over) > 0:
print("left over keys:", left_over)
def load_dynamicrafter(self, model_path):
if os.path.exists(model_path):
dynamicrafter_dict, image_proj_dict = self.load_model_sicts(model_path)
model_config = DynamiCrafterBase(DYNAMICRAFTER_CONFIG)
dynamicrafter_dict, is_eps = model_config.process_dict_version(state_dict=dynamicrafter_dict)
MODEL_TYPE = self.get_prediction_type(is_eps, model_config)
load_device, inital_load_device = self.handle_model_management(dynamicrafter_dict, model_config)
model = model_base.BaseModel(
model_config,
model_type=MODEL_TYPE,
device=inital_load_device,
unet_model=DynamiCrafterUNetModel
)
image_proj_model = get_image_proj_model(image_proj_dict)
model.load_model_weights(dynamicrafter_dict, "model.diffusion_model.")
self.check_leftover_keys(dynamicrafter_dict)
model_patcher = comfy.model_patcher.ModelPatcher(
model,
load_device=load_device,
offload_device=model_management.unet_offload_device(),
current_device=inital_load_device
)
return (model_patcher, image_proj_model,) |