File size: 66,125 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
import os
import json
import hashlib
import folder_paths
import torch
import numpy as np
import comfy.utils
import comfy.model_management
from comfy_extras.nodes_compositing import JoinImageWithAlpha
from server import PromptServer
from nodes import MAX_RESOLUTION, NODE_CLASS_MAPPINGS as ALL_NODE_CLASS_MAPPINGS
from PIL import Image, ImageDraw, ImageFilter, ImageOps
from PIL.PngImagePlugin import PngInfo
import torch.nn.functional as F
from torchvision.transforms import Resize, CenterCrop, GaussianBlur
from torchvision.transforms.functional import to_pil_image
from .libs.log import log_node_info
from .libs.utils import AlwaysEqualProxy, ByPassTypeTuple
from .libs.cache import cache, update_cache, remove_cache
from .libs.image import pil2tensor, tensor2pil, ResizeMode, get_new_bounds, RGB2RGBA, image2mask
from .libs.colorfix import adain_color_fix, wavelet_color_fix
from .libs.chooser import ChooserMessage, ChooserCancelled
from .config import REMBG_DIR, REMBG_MODELS, HUMANPARSING_MODELS, MEDIAPIPE_MODELS, MEDIAPIPE_DIR

any_type = AlwaysEqualProxy("*")
# 图像数量
class imageCount:
  @classmethod
  def INPUT_TYPES(s):
    return {
      "required": {
        "images": ("IMAGE",),
      }
    }

  CATEGORY = "EasyUse/Image"

  RETURN_TYPES = ("INT",)
  RETURN_NAMES = ("count",)
  FUNCTION = "get_count"

  def get_count(self, images):
    return (images.size(0),)

# 图像裁切
class imageInsetCrop:

  @classmethod
  def INPUT_TYPES(cls):  # pylint: disable = invalid-name, missing-function-docstring
    return {
      "required": {
        "image": ("IMAGE",),
        "measurement": (['Pixels', 'Percentage'],),
        "left": ("INT", {
          "default": 0,
          "min": 0,
          "max": MAX_RESOLUTION,
          "step": 8
        }),
        "right": ("INT", {
          "default": 0,
          "min": 0,
          "max": MAX_RESOLUTION,
          "step": 8
        }),
        "top": ("INT", {
          "default": 0,
          "min": 0,
          "max": MAX_RESOLUTION,
          "step": 8
        }),
        "bottom": ("INT", {
          "default": 0,
          "min": 0,
          "max": MAX_RESOLUTION,
          "step": 8
        }),
      },
    }

  RETURN_TYPES = ("IMAGE",)
  FUNCTION = "crop"

  CATEGORY = "EasyUse/Image"

  # pylint: disable = too-many-arguments
  def crop(self, measurement, left, right, top, bottom, image=None):
    """Does the crop."""

    _, height, width, _ = image.shape

    if measurement == 'Percentage':
      left = int(width - (width * (100 - left) / 100))
      right = int(width - (width * (100 - right) / 100))
      top = int(height - (height * (100 - top) / 100))
      bottom = int(height - (height * (100 - bottom) / 100))

    # Snap to 8 pixels
    left = left // 8 * 8
    right = right // 8 * 8
    top = top // 8 * 8
    bottom = bottom // 8 * 8

    if left == 0 and right == 0 and bottom == 0 and top == 0:
      return (image,)

    inset_left, inset_right, inset_top, inset_bottom = get_new_bounds(width, height, left, right,
                                                                      top, bottom)
    if inset_top > inset_bottom:
      raise ValueError(
        f"Invalid cropping dimensions top ({inset_top}) exceeds bottom ({inset_bottom})")
    if inset_left > inset_right:
      raise ValueError(
        f"Invalid cropping dimensions left ({inset_left}) exceeds right ({inset_right})")

    log_node_info("Image Inset Crop", f'Cropping image {width}x{height} width inset by {inset_left},{inset_right}, ' +
                 f'and height inset by {inset_top}, {inset_bottom}')
    image = image[:, inset_top:inset_bottom, inset_left:inset_right, :]

    return (image,)

# 图像尺寸
class imageSize:
  def __init__(self):
    pass

  @classmethod
  def INPUT_TYPES(cls):
    return {
      "required": {
        "image": ("IMAGE",),
      }
    }

  RETURN_TYPES = ("INT", "INT")
  RETURN_NAMES = ("width_int", "height_int")
  OUTPUT_NODE = True
  FUNCTION = "image_width_height"

  CATEGORY = "EasyUse/Image"

  def image_width_height(self, image):
    _, raw_H, raw_W, _ = image.shape

    width = raw_W
    height = raw_H

    if width is not None and height is not None:
      result = (width, height)
    else:
      result = (0, 0)
    return {"ui": {"text": "Width: "+str(width)+" , Height: "+str(height)}, "result": result}

# 图像尺寸(最长边)
class imageSizeBySide:
  def __init__(self):
    pass

  @classmethod
  def INPUT_TYPES(cls):
    return {
      "required": {
        "image": ("IMAGE",),
        "side": (["Longest", "Shortest"],)
      }
    }

  RETURN_TYPES = ("INT",)
  RETURN_NAMES = ("resolution",)
  OUTPUT_NODE = True
  FUNCTION = "image_side"

  CATEGORY = "EasyUse/Image"

  def image_side(self, image, side):
    _, raw_H, raw_W, _ = image.shape

    width = raw_W
    height = raw_H
    if width is not None and height is not None:
      if side == "Longest":
         result = (width,) if width > height else (height,)
      elif side == 'Shortest':
         result = (width,) if width < height else (height,)
    else:
      result = (0,)
    return {"ui": {"text": str(result[0])}, "result": result}

# 图像尺寸(最长边)
class imageSizeByLongerSide:
  def __init__(self):
    pass

  @classmethod
  def INPUT_TYPES(cls):
    return {
      "required": {
        "image": ("IMAGE",),
      }
    }

  RETURN_TYPES = ("INT",)
  RETURN_NAMES = ("resolution",)
  OUTPUT_NODE = True
  FUNCTION = "image_longer_side"

  CATEGORY = "EasyUse/Image"

  def image_longer_side(self, image):
    _, raw_H, raw_W, _ = image.shape

    width = raw_W
    height = raw_H
    if width is not None and height is not None:
      if width > height:
         result = (width,)
      else:
         result = (height,)
    else:
      result = (0,)
    return {"ui": {"text": str(result[0])}, "result": result}

# 图像缩放
class imageScaleDown:
  crop_methods = ["disabled", "center"]

  @classmethod
  def INPUT_TYPES(s):
    return {
      "required": {
        "images": ("IMAGE",),
        "width": (
          "INT",
          {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1},
        ),
        "height": (
          "INT",
          {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1},
        ),
        "crop": (s.crop_methods,),
      }
    }

  RETURN_TYPES = ("IMAGE",)
  CATEGORY = "EasyUse/Image"
  FUNCTION = "image_scale_down"

  def image_scale_down(self, images, width, height, crop):
    if crop == "center":
      old_width = images.shape[2]
      old_height = images.shape[1]
      old_aspect = old_width / old_height
      new_aspect = width / height
      x = 0
      y = 0
      if old_aspect > new_aspect:
        x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
      elif old_aspect < new_aspect:
        y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
      s = images[:, y: old_height - y, x: old_width - x, :]
    else:
      s = images

    results = []
    for image in s:
      img = tensor2pil(image).convert("RGB")
      img = img.resize((width, height), Image.LANCZOS)
      results.append(pil2tensor(img))

    return (torch.cat(results, dim=0),)

# 图像缩放比例
class imageScaleDownBy(imageScaleDown):
  @classmethod
  def INPUT_TYPES(s):
    return {
      "required": {
        "images": ("IMAGE",),
        "scale_by": (
          "FLOAT",
          {"default": 0.5, "min": 0.01, "max": 1.0, "step": 0.01},
        ),
      }
    }

  RETURN_TYPES = ("IMAGE",)
  CATEGORY = "EasyUse/Image"
  FUNCTION = "image_scale_down_by"

  def image_scale_down_by(self, images, scale_by):
    width = images.shape[2]
    height = images.shape[1]
    new_width = int(width * scale_by)
    new_height = int(height * scale_by)
    return self.image_scale_down(images, new_width, new_height, "center")

# 图像缩放尺寸
class imageScaleDownToSize(imageScaleDownBy):
  @classmethod
  def INPUT_TYPES(s):
    return {
      "required": {
        "images": ("IMAGE",),
        "size": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
        "mode": ("BOOLEAN", {"default": True, "label_on": "max", "label_off": "min"}),
      }
    }

  RETURN_TYPES = ("IMAGE",)
  CATEGORY = "EasyUse/Image"
  FUNCTION = "image_scale_down_to_size"

  def image_scale_down_to_size(self, images, size, mode):
    width = images.shape[2]
    height = images.shape[1]

    if mode:
      scale_by = size / max(width, height)
    else:
      scale_by = size / min(width, height)

    scale_by = min(scale_by, 1.0)
    return self.image_scale_down_by(images, scale_by)

class imageScaleToNormPixels:
  upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
  @classmethod
  def INPUT_TYPES(s):
    return {
      "required": {
        "image": ("IMAGE",),
        "upscale_method": (s.upscale_methods,),
        "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),
      }
    }

  RETURN_TYPES = ("IMAGE",)
  RETURN_NAMES = ("image",)
  FUNCTION = "scale"
  CATEGORY = "EasyUse/Image"

  def scale(self, image, upscale_method, scale_by):
    height, width = image.shape[1:3]
    width = int(width * scale_by - width * scale_by % 8)
    height = int(height * scale_by - height * scale_by % 8)
    upscale_image_cls = ALL_NODE_CLASS_MAPPINGS['ImageScale']
    image, = upscale_image_cls().upscale(image, upscale_method, width, height, "disabled")
    return (image,)

# 图像比率
class imageRatio:
  def __init__(self):
    pass

  @classmethod
  def INPUT_TYPES(cls):
    return {
      "required": {
        "image": ("IMAGE",),
      }
    }

  RETURN_TYPES = ("INT", "INT", "FLOAT", "FLOAT")
  RETURN_NAMES = ("width_ratio_int", "height_ratio_int", "width_ratio_float", "height_ratio_float")
  OUTPUT_NODE = True
  FUNCTION = "image_ratio"

  CATEGORY = "EasyUse/Image"

  def gcf(self, a, b):
    while b:
      a, b = b, a % b
    return a

  def image_ratio(self, image):
    _, raw_H, raw_W, _ = image.shape

    width = raw_W
    height = raw_H

    ratio = self.gcf(width, height)

    if width is not None and height is not None:
      width_ratio = width // ratio
      height_ratio = height // ratio
      result = (width_ratio, height_ratio, width_ratio, height_ratio)
    else:
      width_ratio = 0
      height_ratio = 0
      result = (0, 0, 0.0, 0.0)
    text = f"Image Ratio is {str(width_ratio)}:{str(height_ratio)}"

    return {"ui": {"text": text}, "result": result}


# 图像完美像素
class imagePixelPerfect:
  @classmethod
  def INPUT_TYPES(s):
    RESIZE_MODES = [ResizeMode.RESIZE.value, ResizeMode.INNER_FIT.value, ResizeMode.OUTER_FIT.value]
    return {
      "required": {
        "image": ("IMAGE",),
        "resize_mode": (RESIZE_MODES, {"default": ResizeMode.RESIZE.value})
      }
    }

  RETURN_TYPES = ("INT",)
  RETURN_NAMES = ("resolution",)
  OUTPUT_NODE = True
  FUNCTION = "execute"

  CATEGORY = "EasyUse/Image"

  def execute(self, image, resize_mode):

    _, raw_H, raw_W, _ = image.shape

    width = raw_W
    height = raw_H

    k0 = float(height) / float(raw_H)
    k1 = float(width) / float(raw_W)

    if resize_mode == ResizeMode.OUTER_FIT.value:
      estimation = min(k0, k1) * float(min(raw_H, raw_W))
    else:
      estimation = max(k0, k1) * float(min(raw_H, raw_W))

    result = int(np.round(estimation))
    text = f"Width:{str(width)}\nHeight:{str(height)}\nPixelPerfect:{str(result)}"

    return {"ui": {"text": text}, "result": (result,)}

# 图像保存 (简易)
from nodes import PreviewImage, SaveImage
class imageSaveSimple:

  def __init__(self):
    self.output_dir = folder_paths.get_output_directory()
    self.type = "output"
    self.prefix_append = ""
    self.compress_level = 4

  @classmethod
  def INPUT_TYPES(s):
    return {"required":
              {
                "images": ("IMAGE",),
                "filename_prefix": ("STRING", {"default": "ComfyUI"}),
                "only_preview": ("BOOLEAN", {"default": False}),
              },
              "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
            }

  RETURN_TYPES = ()
  FUNCTION = "save"
  OUTPUT_NODE = True
  CATEGORY = "EasyUse/Image"

  def save(self, images, filename_prefix="ComfyUI", only_preview=False, prompt=None, extra_pnginfo=None):
    if only_preview:
      PreviewImage().save_images(images, filename_prefix, prompt, extra_pnginfo)
      return ()
    else:
      return SaveImage().save_images(images, filename_prefix, prompt, extra_pnginfo)

# 图像批次合并
class JoinImageBatch:
  """Turns an image batch into one big image."""

  @classmethod
  def INPUT_TYPES(s):
    return {
      "required": {
        "images": ("IMAGE",),
        "mode": (("horizontal", "vertical"), {"default": "horizontal"}),
      },
    }

  RETURN_TYPES = ("IMAGE",)
  RETURN_NAMES = ("image",)
  FUNCTION = "join"
  CATEGORY = "EasyUse/Image"

  def join(self, images, mode):
    n, h, w, c = images.shape
    image = None
    if mode == "vertical":
      # for vertical we can just reshape
      image = images.reshape(1, n * h, w, c)
    elif mode == "horizontal":
      # for horizontal we have to swap axes
      image = torch.transpose(torch.transpose(images, 1, 2).reshape(1, n * w, h, c), 1, 2)
    return (image,)

class imageListToImageBatch:
  @classmethod
  def INPUT_TYPES(s):
    return {"required": {
      "images": ("IMAGE",),
    }}

  INPUT_IS_LIST = True

  RETURN_TYPES = ("IMAGE",)
  FUNCTION = "doit"

  CATEGORY = "EasyUse/Image"

  def doit(self, images):
    if len(images) <= 1:
      return (images[0],)
    else:
      image_shape = images[0].shape
      for i, img in enumerate(images):
        if image_shape[1:] == img[1:]:
          continue
        else:
          images[i] = comfy.utils.common_upscale(img.movedim(-1, 1), img.shape[2], image_shape[1], "lanczos",
                                              "center").movedim(1, -1)
      images = torch.cat(images, dim=0)
      return (images,)


class imageBatchToImageList:
  @classmethod
  def INPUT_TYPES(s):
    return {"required": {"image": ("IMAGE",), }}

  RETURN_TYPES = ("IMAGE",)
  OUTPUT_IS_LIST = (True,)
  FUNCTION = "doit"

  CATEGORY = "EasyUse/Image"

  def doit(self, image):
    images = [image[i:i + 1, ...] for i in range(image.shape[0])]
    return (images,)

# 图像拆分
class imageSplitList:
  @classmethod

  def INPUT_TYPES(s):
    return {
      "required": {
        "images": ("IMAGE",),
      },
    }

  RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE",)
  RETURN_NAMES = ("images", "images", "images",)
  FUNCTION = "doit"
  CATEGORY = "EasyUse/Image"

  def doit(self, images):
    length = len(images)
    new_images = ([], [], [])
    if length % 3 == 0:
      for index, img in enumerate(images):
        if index % 3 == 0:
          new_images[0].append(img)
        elif (index+1) % 3 == 0:
          new_images[2].append(img)
        else:
          new_images[1].append(img)
    elif length % 2 == 0:
      for index, img in enumerate(images):
        if index % 2 == 0:
          new_images[0].append(img)
        else:
          new_images[1].append(img)
    return new_images

class imageSplitGrid:
  @classmethod
  def INPUT_TYPES(s):
    return {
      "required": {
        "images": ("IMAGE",),
        "row": ("INT", {"default": 1,"min": 1,"max": 10,"step": 1,}),
        "column": ("INT", {"default": 1,"min": 1,"max": 10,"step": 1,}),
      }
    }

  RETURN_TYPES = ("IMAGE",)
  RETURN_NAMES = ("images",)
  FUNCTION = "doit"
  CATEGORY = "EasyUse/Image"

  def crop(self, image, width, height, x, y):
    x = min(x, image.shape[2] - 1)
    y = min(y, image.shape[1] - 1)
    to_x = width + x
    to_y = height + y
    img = image[:, y:to_y, x:to_x, :]
    return img

  def doit(self, images, row, column):
    _, height, width, _ = images.shape
    sub_width = width // column
    sub_height = height // row
    new_images = []
    for i in range(row):
        for j in range(column):
          new_images.append(self.crop(images, sub_width, sub_height, j * sub_width, i * sub_height))

    return (torch.cat(new_images, dim=0),)

class imageSplitTiles:

  @classmethod
  def INPUT_TYPES(s):
    return {
      "required": {
        "image": ("IMAGE",),
        "overlap_ratio": ("FLOAT", {"default": 0, "min": 0, "max": 0.5, "step": 0.01, }),
        "overlap_offset": ("INT", {"default": 0, "min": - MAX_RESOLUTION // 2, "max": MAX_RESOLUTION // 2, "step": 1, }),
        "tiles_rows": ("INT", {"default": 2, "min": 1, "max": 50, "step": 1}),
        "tiles_cols": ("INT", {"default": 2, "min": 1, "max": 50, "step": 1}),
      },
      "optional": {
        "norm": ("BOOLEAN", {"default": True}),
      }
    }

  RETURN_TYPES = ("IMAGE", "MASK", "OVERLAP", "INT")
  RETURN_NAMES = ("tiles", "masks", "overlap", "total")
  FUNCTION = "doit"
  CATEGORY = "EasyUse/Image"

  def doit(self, image, overlap_ratio, overlap_offset, tiles_rows, tiles_cols, norm=True):
    height, width = image.shape[1:3]

    total = tiles_rows * tiles_cols
    tile_w = int(width // tiles_cols)
    tile_h = int(height // tiles_rows)

    overlap_w = int(tile_w * overlap_ratio) + overlap_offset
    overlap_h = int(tile_h * overlap_ratio) + overlap_offset

    overlap_w = min(tile_w // 2, overlap_w)
    overlap_h = min(tile_h // 2, overlap_h)

    if norm:
      overlap_w = int(overlap_w - overlap_w % 8)
      overlap_h = int(overlap_h - overlap_h % 8)

    if tiles_rows == 1:
      overlap_h = 0
    if tiles_cols == 1:
      overlap_w = 0

    solid_mask_cls = ALL_NODE_CLASS_MAPPINGS['SolidMask']
    feather_mask_cls = ALL_NODE_CLASS_MAPPINGS['FeatherMask']

    tiles, masks = [], []

    x, y = 0, 0
    for i in range(tiles_rows):
      for j in range(tiles_cols):
        y1 = i * tile_h
        x1 = j * tile_w

        if i > 0:
          y1 -= overlap_h
        if j > 0:
          x1 -= overlap_w

        y2 = y1 + tile_h + overlap_h
        x2 = x1 + tile_w + overlap_w

        if y2 > height:
          y2 = height
          y1 = y2 - tile_h - overlap_h
        if x2 > width:
          x2 = width
          x1 = x2 - tile_w - overlap_w

        tile = image[:, y1:y2, x1:x2, :]
        h = tile.shape[1]
        w = tile.shape[2]
        tiles.append(tile)

        fearing_left = overlap_w if overlap_w * j > 0 else 0
        fearing_top = overlap_h if overlap_h * i > 0 else 0
        fearing_right = 0
        fearing_bottom = 0

        mask, = solid_mask_cls().solid(1, w, h)
        mask, = feather_mask_cls().feather(mask, fearing_left, fearing_top, fearing_right, fearing_bottom)
        masks.append(mask)

    tiles = torch.cat(tiles, dim=0)
    masks = torch.cat(masks, dim=0)

    return (tiles, masks, (overlap_w, overlap_h, tile_w, tile_h, tiles_rows, tiles_cols), total)

class imageTilesFromBatch:
  @classmethod
  def INPUT_TYPES(s):
    return {
      "required": {
        "tiles": ("IMAGE",),
        "masks": ("MASK",),
        "overlap": ("OVERLAP",),
        "index":("INT", {"default": 0, "min": 0, "max": 10000, "step": 1}),
      },
    }

  RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT")
  RETURN_NAMES = ("image", "mask", "x", "y")
  FUNCTION = "doit"
  CATEGORY = "EasyUse/Image"

  def imageFromBatch(self, image, batch_index, length=1):
    s_in = image
    batch_index = min(s_in.shape[0] - 1, batch_index)
    length = min(s_in.shape[0] - batch_index, length)
    s = s_in[batch_index:batch_index + length].clone()
    return s

  def maskFromBatch(self, mask, start, length=1):
    if length > mask.shape[0]:
        length = mask.shape[0]
    start = min(start, mask.shape[0]-1)
    length = min(mask.shape[0]-start, length)
    return mask[start:start + length]

  def doit(self, tiles, masks, overlap, index):
    tile = self.imageFromBatch(tiles, index)
    mask = self.maskFromBatch(masks, index)
    overlap_w, overlap_h, tile_w, tile_h, tiles_rows, tiles_cols = overlap

    x = tile_w * (index % tiles_cols) - overlap_w if (index % tiles_cols) > 0 else 0
    y = tile_h * (index // tiles_cols) - overlap_h if tiles_rows > 1 and index > tiles_cols - 1 else 0

    return (tile, mask, x, y)



class imagesSplitImage:
    @classmethod
    def INPUT_TYPES(s):
        return {
          "required": {
              "images": ("IMAGE",),
          }
        }

    RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "IMAGE", "IMAGE")
    RETURN_NAMES = ("image1", "image2", "image3", "image4", "image5")
    FUNCTION = "split"
    CATEGORY = "EasyUse/Image"

    def split(self, images,):
      new_images = torch.chunk(images, len(images), dim=0)
      return new_images

class imageConcat:
  @classmethod
  def INPUT_TYPES(s):
    return {"required": {
      "image1": ("IMAGE",),
      "image2": ("IMAGE",),
      "direction": (['right','down','left','up',],{"default": 'right'}),
      "match_image_size": ("BOOLEAN", {"default": False}),
    }}

  RETURN_TYPES = ("IMAGE",)
  FUNCTION = "concat"
  CATEGORY = "EasyUse/Image"

  def concat(self, image1, image2, direction, match_image_size):
    if image1 is None:
      return (image2,)
    elif image2 is None:
      return (image1,)
    if match_image_size:
      image2 = torch.nn.functional.interpolate(image2, size=(image1.shape[2], image1.shape[3]), mode="bilinear")
    if direction == 'right':
      row = torch.cat((image1, image2), dim=2)
    elif direction == 'down':
      row = torch.cat((image1, image2), dim=1)
    elif direction == 'left':
      row = torch.cat((image2, image1), dim=2)
    elif direction == 'up':
      row = torch.cat((image2, image1), dim=1)
    return (row,)

# 图片背景移除
from .briaai.rembg import BriaRMBG, preprocess_image, postprocess_image
from .libs.utils import get_local_filepath, easySave, install_package
class imageRemBg:
  @classmethod
  def INPUT_TYPES(self):
    return {
      "required": {
        "images": ("IMAGE",),
        "rem_mode": (("RMBG-2.0", "RMBG-1.4","Inspyrenet"), {"default": "RMBG-1.4"}),
        "image_output": (["Hide", "Preview", "Save", "Hide/Save"], {"default": "Preview"}),
        "save_prefix": ("STRING", {"default": "ComfyUI"}),

      },
      "optional":{
        "torchscript_jit": ("BOOLEAN", {"default": False}),
      },
      "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
    }

  RETURN_TYPES = ("IMAGE", "MASK")
  RETURN_NAMES = ("image", "mask")
  FUNCTION = "remove"
  OUTPUT_NODE = True

  CATEGORY = "EasyUse/Image"

  def remove(self, rem_mode, images, image_output, save_prefix, torchscript_jit=False, prompt=None, extra_pnginfo=None):
    new_images = list()
    masks = list()
    if rem_mode == "RMBG-2.0":
      repo_id = REMBG_MODELS[rem_mode]['model_url']
      model_path = os.path.join(REMBG_DIR, 'RMBG-2.0')
      from huggingface_hub import snapshot_download
      from transformers import AutoModelForImageSegmentation
      snapshot_download(repo_id=repo_id, local_dir=model_path, ignore_patterns=["*.md", "*.txt"])
      model = AutoModelForImageSegmentation.from_pretrained(model_path, trust_remote_code=True)
      torch.set_float32_matmul_precision('high')
      device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
      model.to(device)
      model.eval()

      from torchvision import transforms
      transform_image = transforms.Compose([
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
      ])
      for image in images:
        orig_im = tensor2pil(image)
        input_tensor = transform_image(orig_im).unsqueeze(0).to(device)

        with torch.no_grad():
          preds = model(input_tensor)[-1].sigmoid().cpu()
          pred = preds[0].squeeze()

          mask = transforms.ToPILImage()(pred)
          mask = mask.resize(orig_im.size)

          new_im = orig_im.copy()
          new_im.putalpha(mask)

          new_im_tensor = pil2tensor(new_im)
          mask_tensor = pil2tensor(mask)

          new_images.append(new_im_tensor)
          masks.append(mask_tensor)

      torch.cuda.empty_cache()
      new_images = torch.cat(new_images, dim=0)
      masks = torch.cat(masks, dim=0)

    elif rem_mode == "RMBG-1.4":
      # load model
      model_url = REMBG_MODELS[rem_mode]['model_url']
      suffix = model_url.split(".")[-1]
      model_path = get_local_filepath(model_url, REMBG_DIR, rem_mode+'.'+suffix)

      net = BriaRMBG()
      device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
      net.load_state_dict(torch.load(model_path, map_location=device))
      net.to(device)
      net.eval()
      # prepare input
      model_input_size = [1024, 1024]
      for image in images:
        orig_im = tensor2pil(image)
        w, h = orig_im.size
        image = preprocess_image(orig_im, model_input_size).to(device)
        # inference
        result = net(image)
        result_image = postprocess_image(result[0][0], (h, w))
        mask_im = Image.fromarray(result_image)
        new_im = Image.new("RGBA", mask_im.size, (0,0,0,0))
        new_im.paste(orig_im, mask=mask_im)

        new_images.append(pil2tensor(new_im))
        masks.append(pil2tensor(mask_im))

      new_images = torch.cat(new_images, dim=0)
      masks = torch.cat(masks, dim=0)

    elif rem_mode == "Inspyrenet":
      from tqdm import tqdm
      try:
        from transparent_background import Remover
      except:
          install_package("transparent_background")
          from transparent_background import Remover

      remover = Remover(jit=torchscript_jit)

      for img in tqdm(images, "Inspyrenet Rembg"):
        mid = remover.process(tensor2pil(img), type='rgba')
        out = pil2tensor(mid)
        new_images.append(out)
        mask = out[:, :, :, 3]
        masks.append(mask)
      new_images = torch.cat(new_images, dim=0)
      masks = torch.cat(masks, dim=0)

    results = easySave(new_images, save_prefix, image_output, prompt, extra_pnginfo)

    if image_output in ("Hide", "Hide/Save"):
      return {"ui": {},
              "result": (new_images, masks)}

    return {"ui": {"images": results},
            "result": (new_images, masks)}

# 图像选择器
class imageChooser(PreviewImage):
  @classmethod
  def INPUT_TYPES(self):
    return {
      "required":{
        "mode": (['Always Pause', 'Keep Last Selection'], {"default": "Always Pause"}),
      },
      "optional": {
        "images": ("IMAGE",),
      },
      "hidden": {"prompt": "PROMPT", "my_unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO"},
    }

  RETURN_TYPES = ("IMAGE",)
  RETURN_NAMES = ("image",)
  FUNCTION = "chooser"
  OUTPUT_NODE = True
  INPUT_IS_LIST = True
  CATEGORY = "EasyUse/Image"

  last_ic = {}
  @classmethod
  def IS_CHANGED(cls, my_unique_id, **kwargs):
    return cls.last_ic[my_unique_id[0]]

  def tensor_bundle(self, tensor_in: torch.Tensor, picks):
    if tensor_in is not None and len(picks):
      batch = tensor_in.shape[0]
      return torch.cat(tuple([tensor_in[(x) % batch].unsqueeze_(0) for x in picks])).reshape(
        [-1] + list(tensor_in.shape[1:]))
    else:
      return None

  def chooser(self, prompt=None, my_unique_id=None, extra_pnginfo=None, **kwargs):
    id = my_unique_id[0]
    if id not in ChooserMessage.stash:
      ChooserMessage.stash[id] = {}
    my_stash = ChooserMessage.stash[id]

    # enable stashing. If images is None, we are operating in read-from-stash mode
    if 'images' in kwargs:
      my_stash['images'] = kwargs['images']
    else:
      kwargs['images'] = my_stash.get('images', None)

    if (kwargs['images'] is None):
      return (None, None, None, "")

    images_in = torch.cat(kwargs.pop('images'))
    self.batch = images_in.shape[0]
    for x in kwargs: kwargs[x] = kwargs[x][0]
    result = self.save_images(images=images_in, prompt=prompt)

    images = result['ui']['images']
    PromptServer.instance.send_sync("easyuse-image-choose", {"id": id, "urls": images})

    # 获取上次选择
    mode = kwargs.pop('mode', 'Always Pause')
    last_choosen = None
    if mode == 'Keep Last Selection':
      if not extra_pnginfo:
        print("Error: extra_pnginfo is empty")
      elif (not isinstance(extra_pnginfo[0], dict) or "workflow" not in extra_pnginfo[0]):
        print("Error: extra_pnginfo[0] is not a dict or missing 'workflow' key")
      else:
        workflow = extra_pnginfo[0]["workflow"]
        node = next((x for x in workflow["nodes"] if str(x["id"]) == id), None)
        if node:
          last_choosen = node['properties']['values']

    # wait for selection
    try:
      selections = ChooserMessage.waitForMessage(id, asList=True) if last_choosen is None or len(last_choosen)<1 else last_choosen
      choosen = [x for x in selections if x >= 0] if len(selections)>1 else [0]
    except ChooserCancelled:
      raise comfy.model_management.InterruptProcessingException()

    return {"ui": {"images": images},
              "result": (self.tensor_bundle(images_in, choosen),)}

class imageColorMatch(PreviewImage):
  @classmethod
  def INPUT_TYPES(cls):
    return {
      "required": {
        "image_ref": ("IMAGE",),
        "image_target": ("IMAGE",),
        "method": (['wavelet', 'adain', 'mkl', 'hm', 'reinhard', 'mvgd', 'hm-mvgd-hm', 'hm-mkl-hm'],),
        "image_output": (["Hide", "Preview", "Save", "Hide/Save"], {"default": "Preview"}),
        "save_prefix": ("STRING", {"default": "ComfyUI"}),
      },
      "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
    }

  CATEGORY = "EasyUse/Image"

  RETURN_TYPES = ("IMAGE",)
  RETURN_NAMES = ("image",)
  OUTPUT_NODE = True
  FUNCTION = "color_match"

  def color_match(self, image_ref, image_target, method, image_output, save_prefix, prompt=None, extra_pnginfo=None):
    if method in ["wavelet", "adain"]:
      result_images = wavelet_color_fix(tensor2pil(image_target), tensor2pil(image_ref)) if method == 'wavelet' else adain_color_fix(tensor2pil(image_target), tensor2pil(image_ref))
      new_images = pil2tensor(result_images)
    else:
      try:
        from color_matcher import ColorMatcher
      except:
        install_package("color-matcher")
        from color_matcher import ColorMatcher
      image_ref = image_ref.cpu()
      image_target = image_target.cpu()
      batch_size = image_target.size(0)
      out = []
      images_target = image_target.squeeze()
      images_ref = image_ref.squeeze()

      image_ref_np = images_ref.numpy()
      images_target_np = images_target.numpy()
      if image_ref.size(0) > 1 and image_ref.size(0) != batch_size:
        raise ValueError("ColorMatch: Use either single reference image or a matching batch of reference images.")
      cm = ColorMatcher()
      for i in range(batch_size):
        image_target_np = images_target_np if batch_size == 1 else images_target[i].numpy()
        image_ref_np_i = image_ref_np if image_ref.size(0) == 1 else images_ref[i].numpy()
        try:
          image_result = cm.transfer(src=image_target_np, ref=image_ref_np_i, method=method)
        except BaseException as e:
          print(f"Error occurred during transfer: {e}")
          break
        out.append(torch.from_numpy(image_result))

      new_images = torch.stack(out, dim=0).to(torch.float32)

    results = easySave(new_images, save_prefix, image_output, prompt, extra_pnginfo)

    if image_output in ("Hide", "Hide/Save"):
      return {"ui": {},
              "result": (new_images,)}

    return {"ui": {"images": results},
            "result": (new_images,)}

class imageDetailTransfer:
  @classmethod
  def INPUT_TYPES(s):
    return {
      "required": {
        "target": ("IMAGE",),
        "source": ("IMAGE",),
        "mode": (["add", "multiply", "screen", "overlay", "soft_light", "hard_light", "color_dodge", "color_burn", "difference", "exclusion", "divide",],{"default": "add"}),
        "blur_sigma": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 100.0, "step": 0.01}),
        "blend_factor": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.001, "round": 0.001}),
        "image_output": (["Hide", "Preview", "Save", "Hide/Save"], {"default": "Preview"}),
        "save_prefix": ("STRING", {"default": "ComfyUI"}),
      },
      "optional": {
        "mask": ("MASK",),
      },
      "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
    }

  RETURN_TYPES = ("IMAGE",)
  RETURN_NAMES = ("image",)
  OUTPUT_NODE = True
  FUNCTION = "transfer"
  CATEGORY = "EasyUse/Image"



  def transfer(self, target, source, mode, blur_sigma, blend_factor, image_output, save_prefix, mask=None, prompt=None, extra_pnginfo=None):
    batch_size, height, width, _ = source.shape
    device = comfy.model_management.get_torch_device()
    target_tensor = target.permute(0, 3, 1, 2).clone().to(device)
    source_tensor = source.permute(0, 3, 1, 2).clone().to(device)

    if target.shape[1:] != source.shape[1:]:
      target_tensor = comfy.utils.common_upscale(target_tensor, width, height, "bilinear", "disabled")
    if mask is not None and target.shape[1:] != mask.shape[1:]:
      mask = mask.unsqueeze(1)
      mask = F.interpolate(mask, size=(height, width), mode="bilinear")
      mask = mask.squeeze(1)

    if source.shape[0] < batch_size:
      source = source[0].unsqueeze(0).repeat(batch_size, 1, 1, 1)

    kernel_size = int(6 * int(blur_sigma) + 1)

    gaussian_blur = GaussianBlur(kernel_size=(kernel_size, kernel_size), sigma=(blur_sigma, blur_sigma))

    blurred_target = gaussian_blur(target_tensor)
    blurred_source = gaussian_blur(source_tensor)

    if mode == "add":
      new_image = (source_tensor - blurred_source) + blurred_target
    elif mode == "multiply":
      new_image = source_tensor * blurred_target
    elif mode == "screen":
      new_image = 1 - (1 - source_tensor) * (1 - blurred_target)
    elif mode == "overlay":
      new_image = torch.where(blurred_target < 0.5, 2 * source_tensor * blurred_target,
                               1 - 2 * (1 - source_tensor) * (1 - blurred_target))
    elif mode == "soft_light":
      new_image = (1 - 2 * blurred_target) * source_tensor ** 2 + 2 * blurred_target * source_tensor
    elif mode == "hard_light":
      new_image = torch.where(source_tensor < 0.5, 2 * source_tensor * blurred_target,
                               1 - 2 * (1 - source_tensor) * (1 - blurred_target))
    elif mode == "difference":
      new_image = torch.abs(blurred_target - source_tensor)
    elif mode == "exclusion":
      new_image = 0.5 - 2 * (blurred_target - 0.5) * (source_tensor - 0.5)
    elif mode == "color_dodge":
      new_image = blurred_target / (1 - source_tensor)
    elif mode == "color_burn":
      new_image = 1 - (1 - blurred_target) / source_tensor
    elif mode == "divide":
      new_image = (source_tensor / blurred_source) * blurred_target
    else:
      new_image = source_tensor

    new_image = torch.lerp(target_tensor, new_image, blend_factor)
    if mask is not None:
      mask = mask.to(device)
      new_image = torch.lerp(target_tensor, new_image, mask)
    new_image = torch.clamp(new_image, 0, 1)
    new_image = new_image.permute(0, 2, 3, 1).cpu().float()

    results = easySave(new_image, save_prefix, image_output, prompt, extra_pnginfo)

    if image_output in ("Hide", "Hide/Save"):
      return {"ui": {},
              "result": (new_image,)}

    return {"ui": {"images": results},
            "result": (new_image,)}

# 图像反推
from .libs.image import ci
class imageInterrogator:
    @classmethod
    def INPUT_TYPES(self):
        return {
          "required": {
              "image": ("IMAGE",),
              "mode": (['fast','classic','best','negative'],),
              "use_lowvram": ("BOOLEAN", {"default": True}),
          }
        }

    RETURN_TYPES = ("STRING",)
    RETURN_NAMES = ("prompt",)
    FUNCTION = "interrogate"
    CATEGORY = "EasyUse/Image"
    OUTPUT_NODE = False
    OUTPUT_IS_LIST = (True,)

    def interrogate(self, image, mode, use_lowvram=False):
      prompt = ci.image_to_prompt(image, mode, low_vram=use_lowvram)
      return (prompt,)

# 人类分割器
class humanSegmentation:

    @classmethod
    def INPUT_TYPES(cls):

        return {
          "required":{
            "image": ("IMAGE",),
            "method": (["selfie_multiclass_256x256", "human_parsing_lip", "human_parts (deeplabv3p)"],),
            "confidence": ("FLOAT", {"default": 0.4, "min": 0.05, "max": 0.95, "step": 0.01},),
            "crop_multi": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001},),
          },
          "hidden": {
              "prompt": "PROMPT",
              "my_unique_id": "UNIQUE_ID",
          }
        }

    RETURN_TYPES = ("IMAGE", "MASK", "BBOX")
    RETURN_NAMES = ("image", "mask", "bbox")
    FUNCTION = "parsing"
    CATEGORY = "EasyUse/Segmentation"

    def get_mediapipe_image(self, image: Image):
      import mediapipe as mp
      # Convert image to NumPy array
      numpy_image = np.asarray(image)
      image_format = mp.ImageFormat.SRGB
      # Convert BGR to RGB (if necessary)
      if numpy_image.shape[-1] == 4:
        image_format = mp.ImageFormat.SRGBA
      elif numpy_image.shape[-1] == 3:
        image_format = mp.ImageFormat.SRGB
        numpy_image = cv2.cvtColor(numpy_image, cv2.COLOR_BGR2RGB)
      return mp.Image(image_format=image_format, data=numpy_image)

    def parsing(self, image, confidence, method, crop_multi, prompt=None, my_unique_id=None):
      mask_components = []
      if my_unique_id in prompt:
        if prompt[my_unique_id]["inputs"]['mask_components']:
          mask_components = prompt[my_unique_id]["inputs"]['mask_components'].split(',')
      mask_components = list(map(int, mask_components))
      if method == 'selfie_multiclass_256x256':
        try:
          import mediapipe as mp
        except:
          install_package("mediapipe")
          import mediapipe as mp

        from functools import reduce

        model_path = get_local_filepath(MEDIAPIPE_MODELS['selfie_multiclass_256x256']['model_url'], MEDIAPIPE_DIR)
        model_asset_buffer = None
        with open(model_path, "rb") as f:
            model_asset_buffer = f.read()
        image_segmenter_base_options = mp.tasks.BaseOptions(model_asset_buffer=model_asset_buffer)
        options = mp.tasks.vision.ImageSegmenterOptions(
          base_options=image_segmenter_base_options,
          running_mode=mp.tasks.vision.RunningMode.IMAGE,
          output_category_mask=True)
        # Create the image segmenter
        ret_images = []
        ret_masks = []

        with mp.tasks.vision.ImageSegmenter.create_from_options(options) as segmenter:
            for img in image:
                _image = torch.unsqueeze(img, 0)
                orig_image = tensor2pil(_image).convert('RGB')
                # Convert the Tensor to a PIL image
                i = 255. * img.cpu().numpy()
                image_pil = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
                # create our foreground and background arrays for storing the mask results
                mask_background_array = np.zeros((image_pil.size[0], image_pil.size[1], 4), dtype=np.uint8)
                mask_background_array[:] = (0, 0, 0, 255)
                mask_foreground_array = np.zeros((image_pil.size[0], image_pil.size[1], 4), dtype=np.uint8)
                mask_foreground_array[:] = (255, 255, 255, 255)
                # Retrieve the masks for the segmented image
                media_pipe_image = self.get_mediapipe_image(image=image_pil)
                segmented_masks = segmenter.segment(media_pipe_image)
                masks = []
                for i, com in enumerate(mask_components):
                    masks.append(segmented_masks.confidence_masks[com])

                image_data = media_pipe_image.numpy_view()
                image_shape = image_data.shape
                # convert the image shape from "rgb" to "rgba" aka add the alpha channel
                if image_shape[-1] == 3:
                    image_shape = (image_shape[0], image_shape[1], 4)
                mask_background_array = np.zeros(image_shape, dtype=np.uint8)
                mask_background_array[:] = (0, 0, 0, 255)
                mask_foreground_array = np.zeros(image_shape, dtype=np.uint8)
                mask_foreground_array[:] = (255, 255, 255, 255)
                mask_arrays = []
                if len(masks) == 0:
                    mask_arrays.append(mask_background_array)
                else:
                    for i, mask in enumerate(masks):
                        condition = np.stack((mask.numpy_view(),) * image_shape[-1], axis=-1) > confidence
                        mask_array = np.where(condition, mask_foreground_array, mask_background_array)
                        mask_arrays.append(mask_array)
                # Merge our masks taking the maximum from each
                merged_mask_arrays = reduce(np.maximum, mask_arrays)
                # Create the image
                mask_image = Image.fromarray(merged_mask_arrays)
                # convert PIL image to tensor image
                tensor_mask = mask_image.convert("RGB")
                tensor_mask = np.array(tensor_mask).astype(np.float32) / 255.0
                tensor_mask = torch.from_numpy(tensor_mask)[None,]
                _mask = tensor_mask.squeeze(3)[..., 0]

                _mask = tensor2pil(tensor_mask).convert('L')

                ret_image = RGB2RGBA(orig_image, _mask)
                ret_images.append(pil2tensor(ret_image))
                ret_masks.append(image2mask(_mask))

            output_image = torch.cat(ret_images, dim=0)
            mask = torch.cat(ret_masks, dim=0)

      elif method == "human_parsing_lip":
        from .human_parsing.run_parsing import HumanParsing
        onnx_path = os.path.join(folder_paths.models_dir, 'onnx')
        model_path = get_local_filepath(HUMANPARSING_MODELS['parsing_lip']['model_url'], onnx_path)
        parsing = HumanParsing(model_path=model_path)
        model_image = image.squeeze(0)
        model_image = model_image.permute((2, 0, 1))
        model_image = to_pil_image(model_image)

        map_image, mask = parsing(model_image, mask_components)

        mask = mask[:, :, :, 0]

        alpha = 1.0 - mask

        output_image, = JoinImageWithAlpha().join_image_with_alpha(image, alpha)

      elif method == "human_parts (deeplabv3p)":
        from .human_parsing.run_parsing import HumanParts
        onnx_path = os.path.join(folder_paths.models_dir, 'onnx')
        human_parts_path = os.path.join(onnx_path, 'human-parts')
        model_path = get_local_filepath(HUMANPARSING_MODELS['human-parts']['model_url'], human_parts_path)
        parsing = HumanParts(model_path=model_path)

        mask, = parsing(image, mask_components)

        alpha = 1.0 - mask

        output_image, = JoinImageWithAlpha().join_image_with_alpha(image, alpha)


      # use crop
      bbox = [[0, 0, 0, 0]]
      if crop_multi > 0.0:
        output_image, mask, bbox = imageCropFromMask().crop(output_image, mask, crop_multi, crop_multi, 1.0)

      return (output_image, mask, bbox)

class imageCropFromMask:
    @classmethod
    def INPUT_TYPES(s):
        return {
          "required": {
              "image": ("IMAGE",),
              "mask": ("MASK",),
              "image_crop_multi": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}),
              "mask_crop_multi": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}),
              "bbox_smooth_alpha": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
          },
        }

    RETURN_TYPES = ("IMAGE", "MASK", "BBOX",)
    RETURN_NAMES = ("crop_image", "crop_mask", "bbox",)
    FUNCTION = "crop"
    CATEGORY = "EasyUse/Image"

    def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha):
        if alpha == 0:
            return prev_bbox_size
        return round(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size)

    def smooth_center(self, prev_center, curr_center, alpha=0.5):
        if alpha == 0:
            return prev_center
        return (
            round(alpha * curr_center[0] + (1 - alpha) * prev_center[0]),
            round(alpha * curr_center[1] + (1 - alpha) * prev_center[1])
        )

    def image2mask(self, image):
      return image[:, :, :, 0]

    def mask2image(self, mask):
      return mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)

    def cropimage(self, original_images, masks, crop_size_mult, bbox_smooth_alpha):

      bounding_boxes = []
      cropped_images = []

      self.max_bbox_width = 0
      self.max_bbox_height = 0

      # First, calculate the maximum bounding box size across all masks
      curr_max_bbox_width = 0
      curr_max_bbox_height = 0
      for mask in masks:
        _mask = tensor2pil(mask)
        non_zero_indices = np.nonzero(np.array(_mask))
        min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
        min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
        width = max_x - min_x
        height = max_y - min_y
        curr_max_bbox_width = max(curr_max_bbox_width, width)
        curr_max_bbox_height = max(curr_max_bbox_height, height)

      # Smooth the changes in the bounding box size
      self.max_bbox_width = self.smooth_bbox_size(self.max_bbox_width, curr_max_bbox_width, bbox_smooth_alpha)
      self.max_bbox_height = self.smooth_bbox_size(self.max_bbox_height, curr_max_bbox_height, bbox_smooth_alpha)

      # Apply the crop size multiplier
      self.max_bbox_width = round(self.max_bbox_width * crop_size_mult)
      self.max_bbox_height = round(self.max_bbox_height * crop_size_mult)
      bbox_aspect_ratio = self.max_bbox_width / self.max_bbox_height

      # Then, for each mask and corresponding image...
      for i, (mask, img) in enumerate(zip(masks, original_images)):
        _mask = tensor2pil(mask)
        non_zero_indices = np.nonzero(np.array(_mask))
        min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
        min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])

        # Calculate center of bounding box
        center_x = np.mean(non_zero_indices[1])
        center_y = np.mean(non_zero_indices[0])
        curr_center = (round(center_x), round(center_y))

        # If this is the first frame, initialize prev_center with curr_center
        if not hasattr(self, 'prev_center'):
          self.prev_center = curr_center

        # Smooth the changes in the center coordinates from the second frame onwards
        if i > 0:
          center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
        else:
          center = curr_center

        # Update prev_center for the next frame
        self.prev_center = center

        # Create bounding box using max_bbox_width and max_bbox_height
        half_box_width = round(self.max_bbox_width / 2)
        half_box_height = round(self.max_bbox_height / 2)
        min_x = max(0, center[0] - half_box_width)
        max_x = min(img.shape[1], center[0] + half_box_width)
        min_y = max(0, center[1] - half_box_height)
        max_y = min(img.shape[0], center[1] + half_box_height)

        # Append bounding box coordinates
        bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))

        # Crop the image from the bounding box
        cropped_img = img[min_y:max_y, min_x:max_x, :]

        # Calculate the new dimensions while maintaining the aspect ratio
        new_height = min(cropped_img.shape[0], self.max_bbox_height)
        new_width = round(new_height * bbox_aspect_ratio)

        # Resize the image
        resize_transform = Resize((new_height, new_width))
        resized_img = resize_transform(cropped_img.permute(2, 0, 1))

        # Perform the center crop to the desired size
        crop_transform = CenterCrop((self.max_bbox_height, self.max_bbox_width))  # swap the order here if necessary
        cropped_resized_img = crop_transform(resized_img)

        cropped_images.append(cropped_resized_img.permute(1, 2, 0))

      return cropped_images, bounding_boxes

    def crop(self, image, mask, image_crop_multi, mask_crop_multi, bbox_smooth_alpha):
      cropped_images, bounding_boxes = self.cropimage(image, mask, image_crop_multi, bbox_smooth_alpha)
      cropped_mask_image, _ = self.cropimage(self.mask2image(mask), mask, mask_crop_multi, bbox_smooth_alpha)

      cropped_image_out = torch.stack(cropped_images, dim=0)
      cropped_mask_out = torch.stack(cropped_mask_image, dim=0)

      return (cropped_image_out, cropped_mask_out[:, :, :, 0], bounding_boxes)


class imageUncropFromBBOX:
    @classmethod
    def INPUT_TYPES(s):
        return {
          "required": {
              "original_image": ("IMAGE",),
              "crop_image": ("IMAGE",),
              "bbox": ("BBOX",),
              "border_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01},),
              "use_square_mask": ("BOOLEAN", {"default": True}),
          },
          "optional":{
            "optional_mask": ("MASK",)
          }
        }

    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("image",)
    FUNCTION = "uncrop"
    CATEGORY = "EasyUse/Image"

    def bbox_check(self, bbox, target_size=None):
      if not target_size:
        return bbox

      new_bbox = (
        bbox[0],
        bbox[1],
        min(target_size[0] - bbox[0], bbox[2]),
        min(target_size[1] - bbox[1], bbox[3]),
      )
      return new_bbox

    def bbox_to_region(self, bbox, target_size=None):
      bbox = self.bbox_check(bbox, target_size)
      return (bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3])

    def uncrop(self, original_image, crop_image, bbox, border_blending, use_square_mask, optional_mask=None):
      def inset_border(image, border_width=20, border_color=(0)):
        width, height = image.size
        bordered_image = Image.new(image.mode, (width, height), border_color)
        bordered_image.paste(image, (0, 0))
        draw = ImageDraw.Draw(bordered_image)
        draw.rectangle((0, 0, width - 1, height - 1), outline=border_color, width=border_width)
        return bordered_image

      if len(original_image) != len(crop_image):
        raise ValueError(
          f"The number of original_images ({len(original_image)}) and cropped_images ({len(crop_image)}) should be the same")

        # Ensure there are enough bboxes, but drop the excess if there are more bboxes than images
      if len(bbox) > len(original_image):
        print(f"Warning: Dropping excess bounding boxes. Expected {len(original_image)}, but got {len(bbox)}")
        bbox = bbox[:len(original_image)]
      elif len(bbox) < len(original_image):
        raise ValueError("There should be at least as many bboxes as there are original and cropped images")


      out_images = []

      for i in range(len(original_image)):
        img = tensor2pil(original_image[i])
        crop = tensor2pil(crop_image[i])
        _bbox = bbox[i]

        bb_x, bb_y, bb_width, bb_height = _bbox
        paste_region = self.bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
        
        # rescale the crop image to fit the paste_region
        crop = crop.resize((round(paste_region[2] - paste_region[0]), round(paste_region[3] - paste_region[1])))
        crop_img = crop.convert("RGB")

        # border blending
        if border_blending > 1.0:
          border_blending = 1.0
        elif border_blending < 0.0:
          border_blending = 0.0

        blend_ratio = (max(crop_img.size) / 2) * float(border_blending)
        blend = img.convert("RGBA")

        if use_square_mask:
          mask = Image.new("L", img.size, 0)
          mask_block = Image.new("L", (paste_region[2] - paste_region[0], paste_region[3] - paste_region[1]), 255)
          mask_block = inset_border(mask_block, round(blend_ratio / 2), (0))
          mask.paste(mask_block, paste_region)
        else:
          if optional_mask is None:
            raise ValueError("optional_mask is required when use_square_mask is False")
          original_mask = tensor2pil(optional_mask)
          original_mask = original_mask.resize((paste_region[2] - paste_region[0], paste_region[3] - paste_region[1]))
          mask = Image.new("L", img.size, 0)
          mask.paste(original_mask, paste_region)

        mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4))
        mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio / 4))

        blend.paste(crop_img, paste_region)
        blend.putalpha(mask)

        img = Image.alpha_composite(img.convert("RGBA"), blend)
        out_images.append(img.convert("RGB"))

      output_images = torch.cat([pil2tensor(img) for img in out_images], dim=0)
      return (output_images,)



import cv2
import base64
class loadImageBase64:
  @classmethod
  def INPUT_TYPES(s):
    return {
      "required": {
        "base64_data": ("STRING", {"default": ""}),
        "image_output": (["Hide", "Preview", "Save", "Hide/Save"], {"default": "Preview"}),
        "save_prefix": ("STRING", {"default": "ComfyUI"}),
      },
      "optional": {

      },
      "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
    }

  RETURN_TYPES = ("IMAGE", "MASK")
  OUTPUT_NODE = True
  FUNCTION = "load_image"
  CATEGORY = "EasyUse/Image/LoadImage"

  def convert_color(self, image,):
    if len(image.shape) > 2 and image.shape[2] >= 4:
      return cv2.cvtColor(image, cv2.COLOR_BGRA2RGB)
    return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

  def load_image(self, base64_data, image_output, save_prefix, prompt=None, extra_pnginfo=None):
    nparr = np.frombuffer(base64.b64decode(base64_data), np.uint8)

    result = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED)
    channels = cv2.split(result)
    if len(channels) > 3:
      mask = channels[3].astype(np.float32) / 255.0
      mask = torch.from_numpy(mask)
    else:
      mask = torch.ones(channels[0].shape, dtype=torch.float32, device="cpu")

    result = self.convert_color(result)
    result = result.astype(np.float32) / 255.0
    new_images = torch.from_numpy(result)[None,]

    results = easySave(new_images, save_prefix, image_output, None, None)
    mask = mask.unsqueeze(0)

    if image_output in ("Hide", "Hide/Save"):
      return {"ui": {},
              "result": (new_images, mask)}

    return {"ui": {"images": results},
            "result": (new_images, mask)}

class imageToBase64:
    @classmethod
    def INPUT_TYPES(s):
        return {
        "required": {
            "image": ("IMAGE",),
        },
        }

    RETURN_TYPES = ("STRING",)
    FUNCTION = "to_base64"
    CATEGORY = "EasyUse/Image"
    OUTPUT_NODE = True

    def to_base64(self, image, ):
      import base64
      from io import BytesIO

      # 将张量图像转换为PIL图像
      pil_image = tensor2pil(image)

      buffered = BytesIO()
      pil_image.save(buffered, format="JPEG")
      image_bytes = buffered.getvalue()

      base64_str = base64.b64encode(image_bytes).decode("utf-8")
      return {"result": (base64_str,)}

class removeLocalImage:

  def __init__(self):
    self.hasFile = False

  @classmethod
  def INPUT_TYPES(s):
      return {
        "required": {
          "any": (any_type,),
          "file_name": ("STRING",{"default":""}),
        },
      }

  RETURN_TYPES = ()
  OUTPUT_NODE = True
  FUNCTION = "remove"
  CATEGORY = "EasyUse/Image"



  def remove(self, any, file_name):
    self.hasFile = False
    def listdir(path, dir_name=''):
      for file in os.listdir(path):
        file_path = os.path.join(path, file)
        if os.path.isdir(file_path):
          dir_name = os.path.basename(file_path)
          listdir(file_path, dir_name)
        else:
          file = os.path.join(dir_name, file)
          name_without_extension, file_extension = os.path.splitext(file)
          if name_without_extension == file_name or file == file_name:
            os.remove(os.path.join(folder_paths.input_directory, file))
            self.hasFile = True
            break

    listdir(folder_paths.input_directory, '')

    if self.hasFile:
      PromptServer.instance.send_sync("easyuse-toast", {"content": "Removed SuccessFully", "type":'success'})
    else:
      PromptServer.instance.send_sync("easyuse-toast", {"content": "Removed Failed", "type": 'error'})
    return ()

try:
    from comfy_execution.graph_utils import GraphBuilder, is_link
except:
    GraphBuilder = None
class loadImagesForLoop:
  @classmethod
  def INPUT_TYPES(s):
    return {
      "required": {
        "directory": ("STRING", {"default": ""}),
      },
      "optional": {
        "start_index": ("INT", {"default": 0, "min": 0, "step": 1}),
        "limit": ("INT", {"default":-1, "min":-1, "max": 10000}),
        "initial_value1": (any_type,),
        "initial_value2": (any_type,),
      },
      "hidden": {
        "initial_value0": (any_type,),
        "prompt": "PROMPT",
        "extra_pnginfo": "EXTRA_PNGINFO",
        "unique_id": "UNIQUE_ID"
      }
    }

  RETURN_TYPES = ByPassTypeTuple(tuple(["FLOW_CONTROL", "INT", "IMAGE", "MASK", "STRING", any_type, any_type]))
  RETURN_NAMES = ByPassTypeTuple(tuple(["flow", "index", "image", "mask", "name", "value1", "value2"]))

  FUNCTION = "load_images"

  CATEGORY = "image"

  def load_images(self, directory: str, start_index: int = 0, limit: int =-1, prompt=None, extra_pnginfo=None, unique_id=None, **kwargs):
    if not os.path.isdir(directory):
      raise FileNotFoundError(f"Directory '{directory}' cannot be found.")
    dir_files = os.listdir(directory)
    if len(dir_files) == 0:
      raise FileNotFoundError(f"No files in directory '{directory}'.")

    # Filter files by extension
    valid_extensions = ['.jpg', '.jpeg', '.png', '.webp']
    dir_files = [f for f in dir_files if any(f.lower().endswith(ext) for ext in valid_extensions)]

    dir_files = sorted(dir_files)
    dir_files = [os.path.join(directory, x) for x in dir_files]

    graph = GraphBuilder()
    index = 0
    # unique_id = unique_id.split('.')[len(unique_id.split('.')) - 1] if "." in unique_id else unique_id
    # update_cache('forloop' + str(unique_id), 'forloop', total)
    if "initial_value0" in kwargs:
      index = kwargs["initial_value0"]
    # start at start_index
    image_path = dir_files[start_index+index]

    name = os.path.splitext(os.path.basename(image_path))[0]

    i = Image.open(image_path)
    i = ImageOps.exif_transpose(i)
    image = i.convert("RGB")
    image = np.array(image).astype(np.float32) / 255.0
    image = torch.from_numpy(image)[None,]

    if 'A' in i.getbands():
      mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
      mask = 1. - torch.from_numpy(mask)
    else:
      mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")

    while_open = graph.node("easy whileLoopStart", condition=True, initial_value0=index, initial_value1=kwargs.get('initial_value1',None), initial_value2=kwargs.get('initial_value2',None))
    outputs = [kwargs.get('initial_value1',None), kwargs.get('initial_value2',None)]

    return {
      "result": tuple(["stub", index, image, mask, name] + outputs),
      "expand": graph.finalize(),
    }
# 姿势编辑器
# class poseEditor:
#   @classmethod
#   def INPUT_TYPES(self):
#     temp_dir = folder_paths.get_temp_directory()
#
#     if not os.path.isdir(temp_dir):
#       os.makedirs(temp_dir)
#
#     temp_dir = folder_paths.get_temp_directory()
#
#     return {"required":
#               {"image": (sorted(os.listdir(temp_dir)),)},
#             }
#
#   RETURN_TYPES = ("IMAGE",)
#   FUNCTION = "output_pose"
#
#   CATEGORY = "EasyUse/🚫 Deprecated"
#
#   def output_pose(self, image):
#     image_path = os.path.join(folder_paths.get_temp_directory(), image)
#     # print(f"Create: {image_path}")
#
#     i = Image.open(image_path)
#     image = i.convert("RGB")
#     image = np.array(image).astype(np.float32) / 255.0
#     image = torch.from_numpy(image)[None,]
#
#     return (image,)
#
#   @classmethod
#   def IS_CHANGED(self, image):
#     image_path = os.path.join(
#       folder_paths.get_temp_directory(), image)
#     # print(f'Change: {image_path}')
#
#     m = hashlib.sha256()
#     with open(image_path, 'rb') as f:
#       m.update(f.read())
#     return m.digest().hex()

class saveImageLazy():
  def __init__(self):
    self.output_dir = folder_paths.get_output_directory()
    self.type = "output"
    self.compress_level = 4

  @classmethod
  def INPUT_TYPES(s):
    return {"required":
          {"images": ("IMAGE",),
           "filename_prefix": ("STRING", {"default": "ComfyUI"}),
           "save_metadata": ("BOOLEAN", {"default": True}),
           },
        "optional":{},
        "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
      }

  RETURN_TYPES = ("IMAGE",)
  RETURN_NAMES = ("images",)
  OUTPUT_NODE = False
  FUNCTION = "save"
  CATEGORY = "EasyUse/Image"

  def save(self, images, filename_prefix, save_metadata, prompt=None, extra_pnginfo=None):
    extension = 'png'

    full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
      filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])

    results = list()
    for (batch_number, image) in enumerate(images):
      i = 255. * image.cpu().numpy()
      img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
      metadata = None

      filename_with_batch_num = filename.replace(
        "%batch_num%", str(batch_number))

      counter = 1

      if os.path.exists(full_output_folder) and os.listdir(full_output_folder):
        filtered_filenames = list(filter(
          lambda filename: filename.startswith(
            filename_with_batch_num + "_")
                           and filename[len(filename_with_batch_num) + 1:-4].isdigit(),
          os.listdir(full_output_folder)
        ))

        if filtered_filenames:
          max_counter = max(
            int(filename[len(filename_with_batch_num) + 1:-4])
            for filename in filtered_filenames
          )
          counter = max_counter + 1

      file = f"{filename_with_batch_num}_{counter:05}.{extension}"

      save_path = os.path.join(full_output_folder, file)

      if save_metadata:
        metadata = PngInfo()
        if prompt is not None:
          metadata.add_text("prompt", json.dumps(prompt))
        if extra_pnginfo is not None:
          for x in extra_pnginfo:
            metadata.add_text(
              x, json.dumps(extra_pnginfo[x]))

      img.save(save_path, pnginfo=metadata)

      results.append({
        "filename": file,
        "subfolder": subfolder,
        "type": self.type
      })

    return {"ui": {"images": results} , "result": (images,)}

NODE_CLASS_MAPPINGS = {
  "easy imageInsetCrop": imageInsetCrop,
  "easy imageCount": imageCount,
  "easy imageSize": imageSize,
  "easy imageSizeBySide": imageSizeBySide,
  "easy imageSizeByLongerSide": imageSizeByLongerSide,
  "easy imagePixelPerfect": imagePixelPerfect,
  "easy imageScaleDown": imageScaleDown,
  "easy imageScaleDownBy": imageScaleDownBy,
  "easy imageScaleDownToSize": imageScaleDownToSize,
  "easy imageScaleToNormPixels": imageScaleToNormPixels,
  "easy imageRatio": imageRatio,
  "easy imageConcat": imageConcat,
  "easy imageListToImageBatch": imageListToImageBatch,
  "easy imageBatchToImageList": imageBatchToImageList,
  "easy imageSplitList": imageSplitList,
  "easy imageSplitGrid": imageSplitGrid,
  "easy imagesSplitImage": imagesSplitImage,
  "easy imageSplitTiles": imageSplitTiles,
  "easy imageTilesFromBatch": imageTilesFromBatch,
  "easy imageCropFromMask": imageCropFromMask,
  "easy imageUncropFromBBOX": imageUncropFromBBOX,
  "easy imageSave": imageSaveSimple,
  "easy imageRemBg": imageRemBg,
  "easy imageChooser": imageChooser,
  "easy imageColorMatch": imageColorMatch,
  "easy imageDetailTransfer": imageDetailTransfer,
  "easy imageInterrogator": imageInterrogator,
  "easy loadImagesForLoop": loadImagesForLoop,
  "easy loadImageBase64": loadImageBase64,
  "easy imageToBase64": imageToBase64,
  "easy joinImageBatch": JoinImageBatch,
  "easy humanSegmentation": humanSegmentation,
  "easy removeLocalImage": removeLocalImage,
  "easy saveImageLazy": saveImageLazy,
}

NODE_DISPLAY_NAME_MAPPINGS = {
  "easy imageInsetCrop": "ImageInsetCrop",
  "easy imageCount": "ImageCount",
  "easy imageSize": "ImageSize",
  "easy imageSizeBySide": "ImageSize (Side)",
  "easy imageSizeByLongerSide": "ImageSize (LongerSide)",
  "easy imagePixelPerfect": "ImagePixelPerfect",
  "easy imageScaleDown": "Image Scale Down",
  "easy imageScaleDownBy": "Image Scale Down By",
  "easy imageScaleDownToSize": "Image Scale Down To Size",
  "easy imageScaleToNormPixels": "ImageScaleToNormPixels",
  "easy imageRatio": "ImageRatio",
  "easy imageHSVMask": "ImageHSVMask",
  "easy imageConcat": "imageConcat",
  "easy imageListToImageBatch": "Image List To Image Batch",
  "easy imageBatchToImageList": "Image Batch To Image List",
  "easy imageSplitList": "imageSplitList",
  "easy imageSplitGrid": "imageSplitGrid",
  "easy imageSplitTiles": "imageSplitTiles",
  "easy imageTilesFromBatch": "imageTilesFromBatch",
  "easy imagesSplitImage": "imagesSplitImage",
  "easy imageCropFromMask": "imageCropFromMask",
  "easy imageUncropFromBBOX": "imageUncropFromBBOX",
  "easy imageSave": "Save Image (Simple)",
  "easy imageRemBg": "Image Remove Bg",
  "easy imageChooser": "Image Chooser",
  "easy imageColorMatch": "Image Color Match",
  "easy imageDetailTransfer": "Image Detail Transfer",
  "easy imageInterrogator": "Image To Prompt",
  "easy joinImageBatch": "JoinImageBatch",
  "easy loadImageBase64": "Load Image (Base64)",
  "easy loadImagesForLoop": "Load Images For Loop",
  "easy imageToBase64": "Image To Base64",
  "easy humanSegmentation": "Human Segmentation",
  "easy removeLocalImage": "Remove Local Image",
  "easy saveImageLazy": "Save Image (Lazy)",
}