File size: 66,125 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 |
import os
import json
import hashlib
import folder_paths
import torch
import numpy as np
import comfy.utils
import comfy.model_management
from comfy_extras.nodes_compositing import JoinImageWithAlpha
from server import PromptServer
from nodes import MAX_RESOLUTION, NODE_CLASS_MAPPINGS as ALL_NODE_CLASS_MAPPINGS
from PIL import Image, ImageDraw, ImageFilter, ImageOps
from PIL.PngImagePlugin import PngInfo
import torch.nn.functional as F
from torchvision.transforms import Resize, CenterCrop, GaussianBlur
from torchvision.transforms.functional import to_pil_image
from .libs.log import log_node_info
from .libs.utils import AlwaysEqualProxy, ByPassTypeTuple
from .libs.cache import cache, update_cache, remove_cache
from .libs.image import pil2tensor, tensor2pil, ResizeMode, get_new_bounds, RGB2RGBA, image2mask
from .libs.colorfix import adain_color_fix, wavelet_color_fix
from .libs.chooser import ChooserMessage, ChooserCancelled
from .config import REMBG_DIR, REMBG_MODELS, HUMANPARSING_MODELS, MEDIAPIPE_MODELS, MEDIAPIPE_DIR
any_type = AlwaysEqualProxy("*")
# 图像数量
class imageCount:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
}
}
CATEGORY = "EasyUse/Image"
RETURN_TYPES = ("INT",)
RETURN_NAMES = ("count",)
FUNCTION = "get_count"
def get_count(self, images):
return (images.size(0),)
# 图像裁切
class imageInsetCrop:
@classmethod
def INPUT_TYPES(cls): # pylint: disable = invalid-name, missing-function-docstring
return {
"required": {
"image": ("IMAGE",),
"measurement": (['Pixels', 'Percentage'],),
"left": ("INT", {
"default": 0,
"min": 0,
"max": MAX_RESOLUTION,
"step": 8
}),
"right": ("INT", {
"default": 0,
"min": 0,
"max": MAX_RESOLUTION,
"step": 8
}),
"top": ("INT", {
"default": 0,
"min": 0,
"max": MAX_RESOLUTION,
"step": 8
}),
"bottom": ("INT", {
"default": 0,
"min": 0,
"max": MAX_RESOLUTION,
"step": 8
}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "crop"
CATEGORY = "EasyUse/Image"
# pylint: disable = too-many-arguments
def crop(self, measurement, left, right, top, bottom, image=None):
"""Does the crop."""
_, height, width, _ = image.shape
if measurement == 'Percentage':
left = int(width - (width * (100 - left) / 100))
right = int(width - (width * (100 - right) / 100))
top = int(height - (height * (100 - top) / 100))
bottom = int(height - (height * (100 - bottom) / 100))
# Snap to 8 pixels
left = left // 8 * 8
right = right // 8 * 8
top = top // 8 * 8
bottom = bottom // 8 * 8
if left == 0 and right == 0 and bottom == 0 and top == 0:
return (image,)
inset_left, inset_right, inset_top, inset_bottom = get_new_bounds(width, height, left, right,
top, bottom)
if inset_top > inset_bottom:
raise ValueError(
f"Invalid cropping dimensions top ({inset_top}) exceeds bottom ({inset_bottom})")
if inset_left > inset_right:
raise ValueError(
f"Invalid cropping dimensions left ({inset_left}) exceeds right ({inset_right})")
log_node_info("Image Inset Crop", f'Cropping image {width}x{height} width inset by {inset_left},{inset_right}, ' +
f'and height inset by {inset_top}, {inset_bottom}')
image = image[:, inset_top:inset_bottom, inset_left:inset_right, :]
return (image,)
# 图像尺寸
class imageSize:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("INT", "INT")
RETURN_NAMES = ("width_int", "height_int")
OUTPUT_NODE = True
FUNCTION = "image_width_height"
CATEGORY = "EasyUse/Image"
def image_width_height(self, image):
_, raw_H, raw_W, _ = image.shape
width = raw_W
height = raw_H
if width is not None and height is not None:
result = (width, height)
else:
result = (0, 0)
return {"ui": {"text": "Width: "+str(width)+" , Height: "+str(height)}, "result": result}
# 图像尺寸(最长边)
class imageSizeBySide:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"side": (["Longest", "Shortest"],)
}
}
RETURN_TYPES = ("INT",)
RETURN_NAMES = ("resolution",)
OUTPUT_NODE = True
FUNCTION = "image_side"
CATEGORY = "EasyUse/Image"
def image_side(self, image, side):
_, raw_H, raw_W, _ = image.shape
width = raw_W
height = raw_H
if width is not None and height is not None:
if side == "Longest":
result = (width,) if width > height else (height,)
elif side == 'Shortest':
result = (width,) if width < height else (height,)
else:
result = (0,)
return {"ui": {"text": str(result[0])}, "result": result}
# 图像尺寸(最长边)
class imageSizeByLongerSide:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("INT",)
RETURN_NAMES = ("resolution",)
OUTPUT_NODE = True
FUNCTION = "image_longer_side"
CATEGORY = "EasyUse/Image"
def image_longer_side(self, image):
_, raw_H, raw_W, _ = image.shape
width = raw_W
height = raw_H
if width is not None and height is not None:
if width > height:
result = (width,)
else:
result = (height,)
else:
result = (0,)
return {"ui": {"text": str(result[0])}, "result": result}
# 图像缩放
class imageScaleDown:
crop_methods = ["disabled", "center"]
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"width": (
"INT",
{"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1},
),
"height": (
"INT",
{"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1},
),
"crop": (s.crop_methods,),
}
}
RETURN_TYPES = ("IMAGE",)
CATEGORY = "EasyUse/Image"
FUNCTION = "image_scale_down"
def image_scale_down(self, images, width, height, crop):
if crop == "center":
old_width = images.shape[2]
old_height = images.shape[1]
old_aspect = old_width / old_height
new_aspect = width / height
x = 0
y = 0
if old_aspect > new_aspect:
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
elif old_aspect < new_aspect:
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
s = images[:, y: old_height - y, x: old_width - x, :]
else:
s = images
results = []
for image in s:
img = tensor2pil(image).convert("RGB")
img = img.resize((width, height), Image.LANCZOS)
results.append(pil2tensor(img))
return (torch.cat(results, dim=0),)
# 图像缩放比例
class imageScaleDownBy(imageScaleDown):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"scale_by": (
"FLOAT",
{"default": 0.5, "min": 0.01, "max": 1.0, "step": 0.01},
),
}
}
RETURN_TYPES = ("IMAGE",)
CATEGORY = "EasyUse/Image"
FUNCTION = "image_scale_down_by"
def image_scale_down_by(self, images, scale_by):
width = images.shape[2]
height = images.shape[1]
new_width = int(width * scale_by)
new_height = int(height * scale_by)
return self.image_scale_down(images, new_width, new_height, "center")
# 图像缩放尺寸
class imageScaleDownToSize(imageScaleDownBy):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"size": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"mode": ("BOOLEAN", {"default": True, "label_on": "max", "label_off": "min"}),
}
}
RETURN_TYPES = ("IMAGE",)
CATEGORY = "EasyUse/Image"
FUNCTION = "image_scale_down_to_size"
def image_scale_down_to_size(self, images, size, mode):
width = images.shape[2]
height = images.shape[1]
if mode:
scale_by = size / max(width, height)
else:
scale_by = size / min(width, height)
scale_by = min(scale_by, 1.0)
return self.image_scale_down_by(images, scale_by)
class imageScaleToNormPixels:
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"upscale_method": (s.upscale_methods,),
"scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "scale"
CATEGORY = "EasyUse/Image"
def scale(self, image, upscale_method, scale_by):
height, width = image.shape[1:3]
width = int(width * scale_by - width * scale_by % 8)
height = int(height * scale_by - height * scale_by % 8)
upscale_image_cls = ALL_NODE_CLASS_MAPPINGS['ImageScale']
image, = upscale_image_cls().upscale(image, upscale_method, width, height, "disabled")
return (image,)
# 图像比率
class imageRatio:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("INT", "INT", "FLOAT", "FLOAT")
RETURN_NAMES = ("width_ratio_int", "height_ratio_int", "width_ratio_float", "height_ratio_float")
OUTPUT_NODE = True
FUNCTION = "image_ratio"
CATEGORY = "EasyUse/Image"
def gcf(self, a, b):
while b:
a, b = b, a % b
return a
def image_ratio(self, image):
_, raw_H, raw_W, _ = image.shape
width = raw_W
height = raw_H
ratio = self.gcf(width, height)
if width is not None and height is not None:
width_ratio = width // ratio
height_ratio = height // ratio
result = (width_ratio, height_ratio, width_ratio, height_ratio)
else:
width_ratio = 0
height_ratio = 0
result = (0, 0, 0.0, 0.0)
text = f"Image Ratio is {str(width_ratio)}:{str(height_ratio)}"
return {"ui": {"text": text}, "result": result}
# 图像完美像素
class imagePixelPerfect:
@classmethod
def INPUT_TYPES(s):
RESIZE_MODES = [ResizeMode.RESIZE.value, ResizeMode.INNER_FIT.value, ResizeMode.OUTER_FIT.value]
return {
"required": {
"image": ("IMAGE",),
"resize_mode": (RESIZE_MODES, {"default": ResizeMode.RESIZE.value})
}
}
RETURN_TYPES = ("INT",)
RETURN_NAMES = ("resolution",)
OUTPUT_NODE = True
FUNCTION = "execute"
CATEGORY = "EasyUse/Image"
def execute(self, image, resize_mode):
_, raw_H, raw_W, _ = image.shape
width = raw_W
height = raw_H
k0 = float(height) / float(raw_H)
k1 = float(width) / float(raw_W)
if resize_mode == ResizeMode.OUTER_FIT.value:
estimation = min(k0, k1) * float(min(raw_H, raw_W))
else:
estimation = max(k0, k1) * float(min(raw_H, raw_W))
result = int(np.round(estimation))
text = f"Width:{str(width)}\nHeight:{str(height)}\nPixelPerfect:{str(result)}"
return {"ui": {"text": text}, "result": (result,)}
# 图像保存 (简易)
from nodes import PreviewImage, SaveImage
class imageSaveSimple:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
self.compress_level = 4
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"images": ("IMAGE",),
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
"only_preview": ("BOOLEAN", {"default": False}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "EasyUse/Image"
def save(self, images, filename_prefix="ComfyUI", only_preview=False, prompt=None, extra_pnginfo=None):
if only_preview:
PreviewImage().save_images(images, filename_prefix, prompt, extra_pnginfo)
return ()
else:
return SaveImage().save_images(images, filename_prefix, prompt, extra_pnginfo)
# 图像批次合并
class JoinImageBatch:
"""Turns an image batch into one big image."""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"mode": (("horizontal", "vertical"), {"default": "horizontal"}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "join"
CATEGORY = "EasyUse/Image"
def join(self, images, mode):
n, h, w, c = images.shape
image = None
if mode == "vertical":
# for vertical we can just reshape
image = images.reshape(1, n * h, w, c)
elif mode == "horizontal":
# for horizontal we have to swap axes
image = torch.transpose(torch.transpose(images, 1, 2).reshape(1, n * w, h, c), 1, 2)
return (image,)
class imageListToImageBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"images": ("IMAGE",),
}}
INPUT_IS_LIST = True
RETURN_TYPES = ("IMAGE",)
FUNCTION = "doit"
CATEGORY = "EasyUse/Image"
def doit(self, images):
if len(images) <= 1:
return (images[0],)
else:
image_shape = images[0].shape
for i, img in enumerate(images):
if image_shape[1:] == img[1:]:
continue
else:
images[i] = comfy.utils.common_upscale(img.movedim(-1, 1), img.shape[2], image_shape[1], "lanczos",
"center").movedim(1, -1)
images = torch.cat(images, dim=0)
return (images,)
class imageBatchToImageList:
@classmethod
def INPUT_TYPES(s):
return {"required": {"image": ("IMAGE",), }}
RETURN_TYPES = ("IMAGE",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "doit"
CATEGORY = "EasyUse/Image"
def doit(self, image):
images = [image[i:i + 1, ...] for i in range(image.shape[0])]
return (images,)
# 图像拆分
class imageSplitList:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE",)
RETURN_NAMES = ("images", "images", "images",)
FUNCTION = "doit"
CATEGORY = "EasyUse/Image"
def doit(self, images):
length = len(images)
new_images = ([], [], [])
if length % 3 == 0:
for index, img in enumerate(images):
if index % 3 == 0:
new_images[0].append(img)
elif (index+1) % 3 == 0:
new_images[2].append(img)
else:
new_images[1].append(img)
elif length % 2 == 0:
for index, img in enumerate(images):
if index % 2 == 0:
new_images[0].append(img)
else:
new_images[1].append(img)
return new_images
class imageSplitGrid:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"row": ("INT", {"default": 1,"min": 1,"max": 10,"step": 1,}),
"column": ("INT", {"default": 1,"min": 1,"max": 10,"step": 1,}),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "doit"
CATEGORY = "EasyUse/Image"
def crop(self, image, width, height, x, y):
x = min(x, image.shape[2] - 1)
y = min(y, image.shape[1] - 1)
to_x = width + x
to_y = height + y
img = image[:, y:to_y, x:to_x, :]
return img
def doit(self, images, row, column):
_, height, width, _ = images.shape
sub_width = width // column
sub_height = height // row
new_images = []
for i in range(row):
for j in range(column):
new_images.append(self.crop(images, sub_width, sub_height, j * sub_width, i * sub_height))
return (torch.cat(new_images, dim=0),)
class imageSplitTiles:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"overlap_ratio": ("FLOAT", {"default": 0, "min": 0, "max": 0.5, "step": 0.01, }),
"overlap_offset": ("INT", {"default": 0, "min": - MAX_RESOLUTION // 2, "max": MAX_RESOLUTION // 2, "step": 1, }),
"tiles_rows": ("INT", {"default": 2, "min": 1, "max": 50, "step": 1}),
"tiles_cols": ("INT", {"default": 2, "min": 1, "max": 50, "step": 1}),
},
"optional": {
"norm": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("IMAGE", "MASK", "OVERLAP", "INT")
RETURN_NAMES = ("tiles", "masks", "overlap", "total")
FUNCTION = "doit"
CATEGORY = "EasyUse/Image"
def doit(self, image, overlap_ratio, overlap_offset, tiles_rows, tiles_cols, norm=True):
height, width = image.shape[1:3]
total = tiles_rows * tiles_cols
tile_w = int(width // tiles_cols)
tile_h = int(height // tiles_rows)
overlap_w = int(tile_w * overlap_ratio) + overlap_offset
overlap_h = int(tile_h * overlap_ratio) + overlap_offset
overlap_w = min(tile_w // 2, overlap_w)
overlap_h = min(tile_h // 2, overlap_h)
if norm:
overlap_w = int(overlap_w - overlap_w % 8)
overlap_h = int(overlap_h - overlap_h % 8)
if tiles_rows == 1:
overlap_h = 0
if tiles_cols == 1:
overlap_w = 0
solid_mask_cls = ALL_NODE_CLASS_MAPPINGS['SolidMask']
feather_mask_cls = ALL_NODE_CLASS_MAPPINGS['FeatherMask']
tiles, masks = [], []
x, y = 0, 0
for i in range(tiles_rows):
for j in range(tiles_cols):
y1 = i * tile_h
x1 = j * tile_w
if i > 0:
y1 -= overlap_h
if j > 0:
x1 -= overlap_w
y2 = y1 + tile_h + overlap_h
x2 = x1 + tile_w + overlap_w
if y2 > height:
y2 = height
y1 = y2 - tile_h - overlap_h
if x2 > width:
x2 = width
x1 = x2 - tile_w - overlap_w
tile = image[:, y1:y2, x1:x2, :]
h = tile.shape[1]
w = tile.shape[2]
tiles.append(tile)
fearing_left = overlap_w if overlap_w * j > 0 else 0
fearing_top = overlap_h if overlap_h * i > 0 else 0
fearing_right = 0
fearing_bottom = 0
mask, = solid_mask_cls().solid(1, w, h)
mask, = feather_mask_cls().feather(mask, fearing_left, fearing_top, fearing_right, fearing_bottom)
masks.append(mask)
tiles = torch.cat(tiles, dim=0)
masks = torch.cat(masks, dim=0)
return (tiles, masks, (overlap_w, overlap_h, tile_w, tile_h, tiles_rows, tiles_cols), total)
class imageTilesFromBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"tiles": ("IMAGE",),
"masks": ("MASK",),
"overlap": ("OVERLAP",),
"index":("INT", {"default": 0, "min": 0, "max": 10000, "step": 1}),
},
}
RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT")
RETURN_NAMES = ("image", "mask", "x", "y")
FUNCTION = "doit"
CATEGORY = "EasyUse/Image"
def imageFromBatch(self, image, batch_index, length=1):
s_in = image
batch_index = min(s_in.shape[0] - 1, batch_index)
length = min(s_in.shape[0] - batch_index, length)
s = s_in[batch_index:batch_index + length].clone()
return s
def maskFromBatch(self, mask, start, length=1):
if length > mask.shape[0]:
length = mask.shape[0]
start = min(start, mask.shape[0]-1)
length = min(mask.shape[0]-start, length)
return mask[start:start + length]
def doit(self, tiles, masks, overlap, index):
tile = self.imageFromBatch(tiles, index)
mask = self.maskFromBatch(masks, index)
overlap_w, overlap_h, tile_w, tile_h, tiles_rows, tiles_cols = overlap
x = tile_w * (index % tiles_cols) - overlap_w if (index % tiles_cols) > 0 else 0
y = tile_h * (index // tiles_cols) - overlap_h if tiles_rows > 1 and index > tiles_cols - 1 else 0
return (tile, mask, x, y)
class imagesSplitImage:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "IMAGE", "IMAGE")
RETURN_NAMES = ("image1", "image2", "image3", "image4", "image5")
FUNCTION = "split"
CATEGORY = "EasyUse/Image"
def split(self, images,):
new_images = torch.chunk(images, len(images), dim=0)
return new_images
class imageConcat:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"direction": (['right','down','left','up',],{"default": 'right'}),
"match_image_size": ("BOOLEAN", {"default": False}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "concat"
CATEGORY = "EasyUse/Image"
def concat(self, image1, image2, direction, match_image_size):
if image1 is None:
return (image2,)
elif image2 is None:
return (image1,)
if match_image_size:
image2 = torch.nn.functional.interpolate(image2, size=(image1.shape[2], image1.shape[3]), mode="bilinear")
if direction == 'right':
row = torch.cat((image1, image2), dim=2)
elif direction == 'down':
row = torch.cat((image1, image2), dim=1)
elif direction == 'left':
row = torch.cat((image2, image1), dim=2)
elif direction == 'up':
row = torch.cat((image2, image1), dim=1)
return (row,)
# 图片背景移除
from .briaai.rembg import BriaRMBG, preprocess_image, postprocess_image
from .libs.utils import get_local_filepath, easySave, install_package
class imageRemBg:
@classmethod
def INPUT_TYPES(self):
return {
"required": {
"images": ("IMAGE",),
"rem_mode": (("RMBG-2.0", "RMBG-1.4","Inspyrenet"), {"default": "RMBG-1.4"}),
"image_output": (["Hide", "Preview", "Save", "Hide/Save"], {"default": "Preview"}),
"save_prefix": ("STRING", {"default": "ComfyUI"}),
},
"optional":{
"torchscript_jit": ("BOOLEAN", {"default": False}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ("IMAGE", "MASK")
RETURN_NAMES = ("image", "mask")
FUNCTION = "remove"
OUTPUT_NODE = True
CATEGORY = "EasyUse/Image"
def remove(self, rem_mode, images, image_output, save_prefix, torchscript_jit=False, prompt=None, extra_pnginfo=None):
new_images = list()
masks = list()
if rem_mode == "RMBG-2.0":
repo_id = REMBG_MODELS[rem_mode]['model_url']
model_path = os.path.join(REMBG_DIR, 'RMBG-2.0')
from huggingface_hub import snapshot_download
from transformers import AutoModelForImageSegmentation
snapshot_download(repo_id=repo_id, local_dir=model_path, ignore_patterns=["*.md", "*.txt"])
model = AutoModelForImageSegmentation.from_pretrained(model_path, trust_remote_code=True)
torch.set_float32_matmul_precision('high')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
from torchvision import transforms
transform_image = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
for image in images:
orig_im = tensor2pil(image)
input_tensor = transform_image(orig_im).unsqueeze(0).to(device)
with torch.no_grad():
preds = model(input_tensor)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
mask = transforms.ToPILImage()(pred)
mask = mask.resize(orig_im.size)
new_im = orig_im.copy()
new_im.putalpha(mask)
new_im_tensor = pil2tensor(new_im)
mask_tensor = pil2tensor(mask)
new_images.append(new_im_tensor)
masks.append(mask_tensor)
torch.cuda.empty_cache()
new_images = torch.cat(new_images, dim=0)
masks = torch.cat(masks, dim=0)
elif rem_mode == "RMBG-1.4":
# load model
model_url = REMBG_MODELS[rem_mode]['model_url']
suffix = model_url.split(".")[-1]
model_path = get_local_filepath(model_url, REMBG_DIR, rem_mode+'.'+suffix)
net = BriaRMBG()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.load_state_dict(torch.load(model_path, map_location=device))
net.to(device)
net.eval()
# prepare input
model_input_size = [1024, 1024]
for image in images:
orig_im = tensor2pil(image)
w, h = orig_im.size
image = preprocess_image(orig_im, model_input_size).to(device)
# inference
result = net(image)
result_image = postprocess_image(result[0][0], (h, w))
mask_im = Image.fromarray(result_image)
new_im = Image.new("RGBA", mask_im.size, (0,0,0,0))
new_im.paste(orig_im, mask=mask_im)
new_images.append(pil2tensor(new_im))
masks.append(pil2tensor(mask_im))
new_images = torch.cat(new_images, dim=0)
masks = torch.cat(masks, dim=0)
elif rem_mode == "Inspyrenet":
from tqdm import tqdm
try:
from transparent_background import Remover
except:
install_package("transparent_background")
from transparent_background import Remover
remover = Remover(jit=torchscript_jit)
for img in tqdm(images, "Inspyrenet Rembg"):
mid = remover.process(tensor2pil(img), type='rgba')
out = pil2tensor(mid)
new_images.append(out)
mask = out[:, :, :, 3]
masks.append(mask)
new_images = torch.cat(new_images, dim=0)
masks = torch.cat(masks, dim=0)
results = easySave(new_images, save_prefix, image_output, prompt, extra_pnginfo)
if image_output in ("Hide", "Hide/Save"):
return {"ui": {},
"result": (new_images, masks)}
return {"ui": {"images": results},
"result": (new_images, masks)}
# 图像选择器
class imageChooser(PreviewImage):
@classmethod
def INPUT_TYPES(self):
return {
"required":{
"mode": (['Always Pause', 'Keep Last Selection'], {"default": "Always Pause"}),
},
"optional": {
"images": ("IMAGE",),
},
"hidden": {"prompt": "PROMPT", "my_unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "chooser"
OUTPUT_NODE = True
INPUT_IS_LIST = True
CATEGORY = "EasyUse/Image"
last_ic = {}
@classmethod
def IS_CHANGED(cls, my_unique_id, **kwargs):
return cls.last_ic[my_unique_id[0]]
def tensor_bundle(self, tensor_in: torch.Tensor, picks):
if tensor_in is not None and len(picks):
batch = tensor_in.shape[0]
return torch.cat(tuple([tensor_in[(x) % batch].unsqueeze_(0) for x in picks])).reshape(
[-1] + list(tensor_in.shape[1:]))
else:
return None
def chooser(self, prompt=None, my_unique_id=None, extra_pnginfo=None, **kwargs):
id = my_unique_id[0]
if id not in ChooserMessage.stash:
ChooserMessage.stash[id] = {}
my_stash = ChooserMessage.stash[id]
# enable stashing. If images is None, we are operating in read-from-stash mode
if 'images' in kwargs:
my_stash['images'] = kwargs['images']
else:
kwargs['images'] = my_stash.get('images', None)
if (kwargs['images'] is None):
return (None, None, None, "")
images_in = torch.cat(kwargs.pop('images'))
self.batch = images_in.shape[0]
for x in kwargs: kwargs[x] = kwargs[x][0]
result = self.save_images(images=images_in, prompt=prompt)
images = result['ui']['images']
PromptServer.instance.send_sync("easyuse-image-choose", {"id": id, "urls": images})
# 获取上次选择
mode = kwargs.pop('mode', 'Always Pause')
last_choosen = None
if mode == 'Keep Last Selection':
if not extra_pnginfo:
print("Error: extra_pnginfo is empty")
elif (not isinstance(extra_pnginfo[0], dict) or "workflow" not in extra_pnginfo[0]):
print("Error: extra_pnginfo[0] is not a dict or missing 'workflow' key")
else:
workflow = extra_pnginfo[0]["workflow"]
node = next((x for x in workflow["nodes"] if str(x["id"]) == id), None)
if node:
last_choosen = node['properties']['values']
# wait for selection
try:
selections = ChooserMessage.waitForMessage(id, asList=True) if last_choosen is None or len(last_choosen)<1 else last_choosen
choosen = [x for x in selections if x >= 0] if len(selections)>1 else [0]
except ChooserCancelled:
raise comfy.model_management.InterruptProcessingException()
return {"ui": {"images": images},
"result": (self.tensor_bundle(images_in, choosen),)}
class imageColorMatch(PreviewImage):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image_ref": ("IMAGE",),
"image_target": ("IMAGE",),
"method": (['wavelet', 'adain', 'mkl', 'hm', 'reinhard', 'mvgd', 'hm-mvgd-hm', 'hm-mkl-hm'],),
"image_output": (["Hide", "Preview", "Save", "Hide/Save"], {"default": "Preview"}),
"save_prefix": ("STRING", {"default": "ComfyUI"}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
CATEGORY = "EasyUse/Image"
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
OUTPUT_NODE = True
FUNCTION = "color_match"
def color_match(self, image_ref, image_target, method, image_output, save_prefix, prompt=None, extra_pnginfo=None):
if method in ["wavelet", "adain"]:
result_images = wavelet_color_fix(tensor2pil(image_target), tensor2pil(image_ref)) if method == 'wavelet' else adain_color_fix(tensor2pil(image_target), tensor2pil(image_ref))
new_images = pil2tensor(result_images)
else:
try:
from color_matcher import ColorMatcher
except:
install_package("color-matcher")
from color_matcher import ColorMatcher
image_ref = image_ref.cpu()
image_target = image_target.cpu()
batch_size = image_target.size(0)
out = []
images_target = image_target.squeeze()
images_ref = image_ref.squeeze()
image_ref_np = images_ref.numpy()
images_target_np = images_target.numpy()
if image_ref.size(0) > 1 and image_ref.size(0) != batch_size:
raise ValueError("ColorMatch: Use either single reference image or a matching batch of reference images.")
cm = ColorMatcher()
for i in range(batch_size):
image_target_np = images_target_np if batch_size == 1 else images_target[i].numpy()
image_ref_np_i = image_ref_np if image_ref.size(0) == 1 else images_ref[i].numpy()
try:
image_result = cm.transfer(src=image_target_np, ref=image_ref_np_i, method=method)
except BaseException as e:
print(f"Error occurred during transfer: {e}")
break
out.append(torch.from_numpy(image_result))
new_images = torch.stack(out, dim=0).to(torch.float32)
results = easySave(new_images, save_prefix, image_output, prompt, extra_pnginfo)
if image_output in ("Hide", "Hide/Save"):
return {"ui": {},
"result": (new_images,)}
return {"ui": {"images": results},
"result": (new_images,)}
class imageDetailTransfer:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"target": ("IMAGE",),
"source": ("IMAGE",),
"mode": (["add", "multiply", "screen", "overlay", "soft_light", "hard_light", "color_dodge", "color_burn", "difference", "exclusion", "divide",],{"default": "add"}),
"blur_sigma": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 100.0, "step": 0.01}),
"blend_factor": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.001, "round": 0.001}),
"image_output": (["Hide", "Preview", "Save", "Hide/Save"], {"default": "Preview"}),
"save_prefix": ("STRING", {"default": "ComfyUI"}),
},
"optional": {
"mask": ("MASK",),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
OUTPUT_NODE = True
FUNCTION = "transfer"
CATEGORY = "EasyUse/Image"
def transfer(self, target, source, mode, blur_sigma, blend_factor, image_output, save_prefix, mask=None, prompt=None, extra_pnginfo=None):
batch_size, height, width, _ = source.shape
device = comfy.model_management.get_torch_device()
target_tensor = target.permute(0, 3, 1, 2).clone().to(device)
source_tensor = source.permute(0, 3, 1, 2).clone().to(device)
if target.shape[1:] != source.shape[1:]:
target_tensor = comfy.utils.common_upscale(target_tensor, width, height, "bilinear", "disabled")
if mask is not None and target.shape[1:] != mask.shape[1:]:
mask = mask.unsqueeze(1)
mask = F.interpolate(mask, size=(height, width), mode="bilinear")
mask = mask.squeeze(1)
if source.shape[0] < batch_size:
source = source[0].unsqueeze(0).repeat(batch_size, 1, 1, 1)
kernel_size = int(6 * int(blur_sigma) + 1)
gaussian_blur = GaussianBlur(kernel_size=(kernel_size, kernel_size), sigma=(blur_sigma, blur_sigma))
blurred_target = gaussian_blur(target_tensor)
blurred_source = gaussian_blur(source_tensor)
if mode == "add":
new_image = (source_tensor - blurred_source) + blurred_target
elif mode == "multiply":
new_image = source_tensor * blurred_target
elif mode == "screen":
new_image = 1 - (1 - source_tensor) * (1 - blurred_target)
elif mode == "overlay":
new_image = torch.where(blurred_target < 0.5, 2 * source_tensor * blurred_target,
1 - 2 * (1 - source_tensor) * (1 - blurred_target))
elif mode == "soft_light":
new_image = (1 - 2 * blurred_target) * source_tensor ** 2 + 2 * blurred_target * source_tensor
elif mode == "hard_light":
new_image = torch.where(source_tensor < 0.5, 2 * source_tensor * blurred_target,
1 - 2 * (1 - source_tensor) * (1 - blurred_target))
elif mode == "difference":
new_image = torch.abs(blurred_target - source_tensor)
elif mode == "exclusion":
new_image = 0.5 - 2 * (blurred_target - 0.5) * (source_tensor - 0.5)
elif mode == "color_dodge":
new_image = blurred_target / (1 - source_tensor)
elif mode == "color_burn":
new_image = 1 - (1 - blurred_target) / source_tensor
elif mode == "divide":
new_image = (source_tensor / blurred_source) * blurred_target
else:
new_image = source_tensor
new_image = torch.lerp(target_tensor, new_image, blend_factor)
if mask is not None:
mask = mask.to(device)
new_image = torch.lerp(target_tensor, new_image, mask)
new_image = torch.clamp(new_image, 0, 1)
new_image = new_image.permute(0, 2, 3, 1).cpu().float()
results = easySave(new_image, save_prefix, image_output, prompt, extra_pnginfo)
if image_output in ("Hide", "Hide/Save"):
return {"ui": {},
"result": (new_image,)}
return {"ui": {"images": results},
"result": (new_image,)}
# 图像反推
from .libs.image import ci
class imageInterrogator:
@classmethod
def INPUT_TYPES(self):
return {
"required": {
"image": ("IMAGE",),
"mode": (['fast','classic','best','negative'],),
"use_lowvram": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("prompt",)
FUNCTION = "interrogate"
CATEGORY = "EasyUse/Image"
OUTPUT_NODE = False
OUTPUT_IS_LIST = (True,)
def interrogate(self, image, mode, use_lowvram=False):
prompt = ci.image_to_prompt(image, mode, low_vram=use_lowvram)
return (prompt,)
# 人类分割器
class humanSegmentation:
@classmethod
def INPUT_TYPES(cls):
return {
"required":{
"image": ("IMAGE",),
"method": (["selfie_multiclass_256x256", "human_parsing_lip", "human_parts (deeplabv3p)"],),
"confidence": ("FLOAT", {"default": 0.4, "min": 0.05, "max": 0.95, "step": 0.01},),
"crop_multi": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001},),
},
"hidden": {
"prompt": "PROMPT",
"my_unique_id": "UNIQUE_ID",
}
}
RETURN_TYPES = ("IMAGE", "MASK", "BBOX")
RETURN_NAMES = ("image", "mask", "bbox")
FUNCTION = "parsing"
CATEGORY = "EasyUse/Segmentation"
def get_mediapipe_image(self, image: Image):
import mediapipe as mp
# Convert image to NumPy array
numpy_image = np.asarray(image)
image_format = mp.ImageFormat.SRGB
# Convert BGR to RGB (if necessary)
if numpy_image.shape[-1] == 4:
image_format = mp.ImageFormat.SRGBA
elif numpy_image.shape[-1] == 3:
image_format = mp.ImageFormat.SRGB
numpy_image = cv2.cvtColor(numpy_image, cv2.COLOR_BGR2RGB)
return mp.Image(image_format=image_format, data=numpy_image)
def parsing(self, image, confidence, method, crop_multi, prompt=None, my_unique_id=None):
mask_components = []
if my_unique_id in prompt:
if prompt[my_unique_id]["inputs"]['mask_components']:
mask_components = prompt[my_unique_id]["inputs"]['mask_components'].split(',')
mask_components = list(map(int, mask_components))
if method == 'selfie_multiclass_256x256':
try:
import mediapipe as mp
except:
install_package("mediapipe")
import mediapipe as mp
from functools import reduce
model_path = get_local_filepath(MEDIAPIPE_MODELS['selfie_multiclass_256x256']['model_url'], MEDIAPIPE_DIR)
model_asset_buffer = None
with open(model_path, "rb") as f:
model_asset_buffer = f.read()
image_segmenter_base_options = mp.tasks.BaseOptions(model_asset_buffer=model_asset_buffer)
options = mp.tasks.vision.ImageSegmenterOptions(
base_options=image_segmenter_base_options,
running_mode=mp.tasks.vision.RunningMode.IMAGE,
output_category_mask=True)
# Create the image segmenter
ret_images = []
ret_masks = []
with mp.tasks.vision.ImageSegmenter.create_from_options(options) as segmenter:
for img in image:
_image = torch.unsqueeze(img, 0)
orig_image = tensor2pil(_image).convert('RGB')
# Convert the Tensor to a PIL image
i = 255. * img.cpu().numpy()
image_pil = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
# create our foreground and background arrays for storing the mask results
mask_background_array = np.zeros((image_pil.size[0], image_pil.size[1], 4), dtype=np.uint8)
mask_background_array[:] = (0, 0, 0, 255)
mask_foreground_array = np.zeros((image_pil.size[0], image_pil.size[1], 4), dtype=np.uint8)
mask_foreground_array[:] = (255, 255, 255, 255)
# Retrieve the masks for the segmented image
media_pipe_image = self.get_mediapipe_image(image=image_pil)
segmented_masks = segmenter.segment(media_pipe_image)
masks = []
for i, com in enumerate(mask_components):
masks.append(segmented_masks.confidence_masks[com])
image_data = media_pipe_image.numpy_view()
image_shape = image_data.shape
# convert the image shape from "rgb" to "rgba" aka add the alpha channel
if image_shape[-1] == 3:
image_shape = (image_shape[0], image_shape[1], 4)
mask_background_array = np.zeros(image_shape, dtype=np.uint8)
mask_background_array[:] = (0, 0, 0, 255)
mask_foreground_array = np.zeros(image_shape, dtype=np.uint8)
mask_foreground_array[:] = (255, 255, 255, 255)
mask_arrays = []
if len(masks) == 0:
mask_arrays.append(mask_background_array)
else:
for i, mask in enumerate(masks):
condition = np.stack((mask.numpy_view(),) * image_shape[-1], axis=-1) > confidence
mask_array = np.where(condition, mask_foreground_array, mask_background_array)
mask_arrays.append(mask_array)
# Merge our masks taking the maximum from each
merged_mask_arrays = reduce(np.maximum, mask_arrays)
# Create the image
mask_image = Image.fromarray(merged_mask_arrays)
# convert PIL image to tensor image
tensor_mask = mask_image.convert("RGB")
tensor_mask = np.array(tensor_mask).astype(np.float32) / 255.0
tensor_mask = torch.from_numpy(tensor_mask)[None,]
_mask = tensor_mask.squeeze(3)[..., 0]
_mask = tensor2pil(tensor_mask).convert('L')
ret_image = RGB2RGBA(orig_image, _mask)
ret_images.append(pil2tensor(ret_image))
ret_masks.append(image2mask(_mask))
output_image = torch.cat(ret_images, dim=0)
mask = torch.cat(ret_masks, dim=0)
elif method == "human_parsing_lip":
from .human_parsing.run_parsing import HumanParsing
onnx_path = os.path.join(folder_paths.models_dir, 'onnx')
model_path = get_local_filepath(HUMANPARSING_MODELS['parsing_lip']['model_url'], onnx_path)
parsing = HumanParsing(model_path=model_path)
model_image = image.squeeze(0)
model_image = model_image.permute((2, 0, 1))
model_image = to_pil_image(model_image)
map_image, mask = parsing(model_image, mask_components)
mask = mask[:, :, :, 0]
alpha = 1.0 - mask
output_image, = JoinImageWithAlpha().join_image_with_alpha(image, alpha)
elif method == "human_parts (deeplabv3p)":
from .human_parsing.run_parsing import HumanParts
onnx_path = os.path.join(folder_paths.models_dir, 'onnx')
human_parts_path = os.path.join(onnx_path, 'human-parts')
model_path = get_local_filepath(HUMANPARSING_MODELS['human-parts']['model_url'], human_parts_path)
parsing = HumanParts(model_path=model_path)
mask, = parsing(image, mask_components)
alpha = 1.0 - mask
output_image, = JoinImageWithAlpha().join_image_with_alpha(image, alpha)
# use crop
bbox = [[0, 0, 0, 0]]
if crop_multi > 0.0:
output_image, mask, bbox = imageCropFromMask().crop(output_image, mask, crop_multi, crop_multi, 1.0)
return (output_image, mask, bbox)
class imageCropFromMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"mask": ("MASK",),
"image_crop_multi": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}),
"mask_crop_multi": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}),
"bbox_smooth_alpha": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = ("IMAGE", "MASK", "BBOX",)
RETURN_NAMES = ("crop_image", "crop_mask", "bbox",)
FUNCTION = "crop"
CATEGORY = "EasyUse/Image"
def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha):
if alpha == 0:
return prev_bbox_size
return round(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size)
def smooth_center(self, prev_center, curr_center, alpha=0.5):
if alpha == 0:
return prev_center
return (
round(alpha * curr_center[0] + (1 - alpha) * prev_center[0]),
round(alpha * curr_center[1] + (1 - alpha) * prev_center[1])
)
def image2mask(self, image):
return image[:, :, :, 0]
def mask2image(self, mask):
return mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
def cropimage(self, original_images, masks, crop_size_mult, bbox_smooth_alpha):
bounding_boxes = []
cropped_images = []
self.max_bbox_width = 0
self.max_bbox_height = 0
# First, calculate the maximum bounding box size across all masks
curr_max_bbox_width = 0
curr_max_bbox_height = 0
for mask in masks:
_mask = tensor2pil(mask)
non_zero_indices = np.nonzero(np.array(_mask))
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
width = max_x - min_x
height = max_y - min_y
curr_max_bbox_width = max(curr_max_bbox_width, width)
curr_max_bbox_height = max(curr_max_bbox_height, height)
# Smooth the changes in the bounding box size
self.max_bbox_width = self.smooth_bbox_size(self.max_bbox_width, curr_max_bbox_width, bbox_smooth_alpha)
self.max_bbox_height = self.smooth_bbox_size(self.max_bbox_height, curr_max_bbox_height, bbox_smooth_alpha)
# Apply the crop size multiplier
self.max_bbox_width = round(self.max_bbox_width * crop_size_mult)
self.max_bbox_height = round(self.max_bbox_height * crop_size_mult)
bbox_aspect_ratio = self.max_bbox_width / self.max_bbox_height
# Then, for each mask and corresponding image...
for i, (mask, img) in enumerate(zip(masks, original_images)):
_mask = tensor2pil(mask)
non_zero_indices = np.nonzero(np.array(_mask))
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
# Calculate center of bounding box
center_x = np.mean(non_zero_indices[1])
center_y = np.mean(non_zero_indices[0])
curr_center = (round(center_x), round(center_y))
# If this is the first frame, initialize prev_center with curr_center
if not hasattr(self, 'prev_center'):
self.prev_center = curr_center
# Smooth the changes in the center coordinates from the second frame onwards
if i > 0:
center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
else:
center = curr_center
# Update prev_center for the next frame
self.prev_center = center
# Create bounding box using max_bbox_width and max_bbox_height
half_box_width = round(self.max_bbox_width / 2)
half_box_height = round(self.max_bbox_height / 2)
min_x = max(0, center[0] - half_box_width)
max_x = min(img.shape[1], center[0] + half_box_width)
min_y = max(0, center[1] - half_box_height)
max_y = min(img.shape[0], center[1] + half_box_height)
# Append bounding box coordinates
bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))
# Crop the image from the bounding box
cropped_img = img[min_y:max_y, min_x:max_x, :]
# Calculate the new dimensions while maintaining the aspect ratio
new_height = min(cropped_img.shape[0], self.max_bbox_height)
new_width = round(new_height * bbox_aspect_ratio)
# Resize the image
resize_transform = Resize((new_height, new_width))
resized_img = resize_transform(cropped_img.permute(2, 0, 1))
# Perform the center crop to the desired size
crop_transform = CenterCrop((self.max_bbox_height, self.max_bbox_width)) # swap the order here if necessary
cropped_resized_img = crop_transform(resized_img)
cropped_images.append(cropped_resized_img.permute(1, 2, 0))
return cropped_images, bounding_boxes
def crop(self, image, mask, image_crop_multi, mask_crop_multi, bbox_smooth_alpha):
cropped_images, bounding_boxes = self.cropimage(image, mask, image_crop_multi, bbox_smooth_alpha)
cropped_mask_image, _ = self.cropimage(self.mask2image(mask), mask, mask_crop_multi, bbox_smooth_alpha)
cropped_image_out = torch.stack(cropped_images, dim=0)
cropped_mask_out = torch.stack(cropped_mask_image, dim=0)
return (cropped_image_out, cropped_mask_out[:, :, :, 0], bounding_boxes)
class imageUncropFromBBOX:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"original_image": ("IMAGE",),
"crop_image": ("IMAGE",),
"bbox": ("BBOX",),
"border_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01},),
"use_square_mask": ("BOOLEAN", {"default": True}),
},
"optional":{
"optional_mask": ("MASK",)
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "uncrop"
CATEGORY = "EasyUse/Image"
def bbox_check(self, bbox, target_size=None):
if not target_size:
return bbox
new_bbox = (
bbox[0],
bbox[1],
min(target_size[0] - bbox[0], bbox[2]),
min(target_size[1] - bbox[1], bbox[3]),
)
return new_bbox
def bbox_to_region(self, bbox, target_size=None):
bbox = self.bbox_check(bbox, target_size)
return (bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3])
def uncrop(self, original_image, crop_image, bbox, border_blending, use_square_mask, optional_mask=None):
def inset_border(image, border_width=20, border_color=(0)):
width, height = image.size
bordered_image = Image.new(image.mode, (width, height), border_color)
bordered_image.paste(image, (0, 0))
draw = ImageDraw.Draw(bordered_image)
draw.rectangle((0, 0, width - 1, height - 1), outline=border_color, width=border_width)
return bordered_image
if len(original_image) != len(crop_image):
raise ValueError(
f"The number of original_images ({len(original_image)}) and cropped_images ({len(crop_image)}) should be the same")
# Ensure there are enough bboxes, but drop the excess if there are more bboxes than images
if len(bbox) > len(original_image):
print(f"Warning: Dropping excess bounding boxes. Expected {len(original_image)}, but got {len(bbox)}")
bbox = bbox[:len(original_image)]
elif len(bbox) < len(original_image):
raise ValueError("There should be at least as many bboxes as there are original and cropped images")
out_images = []
for i in range(len(original_image)):
img = tensor2pil(original_image[i])
crop = tensor2pil(crop_image[i])
_bbox = bbox[i]
bb_x, bb_y, bb_width, bb_height = _bbox
paste_region = self.bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
# rescale the crop image to fit the paste_region
crop = crop.resize((round(paste_region[2] - paste_region[0]), round(paste_region[3] - paste_region[1])))
crop_img = crop.convert("RGB")
# border blending
if border_blending > 1.0:
border_blending = 1.0
elif border_blending < 0.0:
border_blending = 0.0
blend_ratio = (max(crop_img.size) / 2) * float(border_blending)
blend = img.convert("RGBA")
if use_square_mask:
mask = Image.new("L", img.size, 0)
mask_block = Image.new("L", (paste_region[2] - paste_region[0], paste_region[3] - paste_region[1]), 255)
mask_block = inset_border(mask_block, round(blend_ratio / 2), (0))
mask.paste(mask_block, paste_region)
else:
if optional_mask is None:
raise ValueError("optional_mask is required when use_square_mask is False")
original_mask = tensor2pil(optional_mask)
original_mask = original_mask.resize((paste_region[2] - paste_region[0], paste_region[3] - paste_region[1]))
mask = Image.new("L", img.size, 0)
mask.paste(original_mask, paste_region)
mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4))
mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio / 4))
blend.paste(crop_img, paste_region)
blend.putalpha(mask)
img = Image.alpha_composite(img.convert("RGBA"), blend)
out_images.append(img.convert("RGB"))
output_images = torch.cat([pil2tensor(img) for img in out_images], dim=0)
return (output_images,)
import cv2
import base64
class loadImageBase64:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"base64_data": ("STRING", {"default": ""}),
"image_output": (["Hide", "Preview", "Save", "Hide/Save"], {"default": "Preview"}),
"save_prefix": ("STRING", {"default": "ComfyUI"}),
},
"optional": {
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ("IMAGE", "MASK")
OUTPUT_NODE = True
FUNCTION = "load_image"
CATEGORY = "EasyUse/Image/LoadImage"
def convert_color(self, image,):
if len(image.shape) > 2 and image.shape[2] >= 4:
return cv2.cvtColor(image, cv2.COLOR_BGRA2RGB)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
def load_image(self, base64_data, image_output, save_prefix, prompt=None, extra_pnginfo=None):
nparr = np.frombuffer(base64.b64decode(base64_data), np.uint8)
result = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED)
channels = cv2.split(result)
if len(channels) > 3:
mask = channels[3].astype(np.float32) / 255.0
mask = torch.from_numpy(mask)
else:
mask = torch.ones(channels[0].shape, dtype=torch.float32, device="cpu")
result = self.convert_color(result)
result = result.astype(np.float32) / 255.0
new_images = torch.from_numpy(result)[None,]
results = easySave(new_images, save_prefix, image_output, None, None)
mask = mask.unsqueeze(0)
if image_output in ("Hide", "Hide/Save"):
return {"ui": {},
"result": (new_images, mask)}
return {"ui": {"images": results},
"result": (new_images, mask)}
class imageToBase64:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
},
}
RETURN_TYPES = ("STRING",)
FUNCTION = "to_base64"
CATEGORY = "EasyUse/Image"
OUTPUT_NODE = True
def to_base64(self, image, ):
import base64
from io import BytesIO
# 将张量图像转换为PIL图像
pil_image = tensor2pil(image)
buffered = BytesIO()
pil_image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
base64_str = base64.b64encode(image_bytes).decode("utf-8")
return {"result": (base64_str,)}
class removeLocalImage:
def __init__(self):
self.hasFile = False
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"any": (any_type,),
"file_name": ("STRING",{"default":""}),
},
}
RETURN_TYPES = ()
OUTPUT_NODE = True
FUNCTION = "remove"
CATEGORY = "EasyUse/Image"
def remove(self, any, file_name):
self.hasFile = False
def listdir(path, dir_name=''):
for file in os.listdir(path):
file_path = os.path.join(path, file)
if os.path.isdir(file_path):
dir_name = os.path.basename(file_path)
listdir(file_path, dir_name)
else:
file = os.path.join(dir_name, file)
name_without_extension, file_extension = os.path.splitext(file)
if name_without_extension == file_name or file == file_name:
os.remove(os.path.join(folder_paths.input_directory, file))
self.hasFile = True
break
listdir(folder_paths.input_directory, '')
if self.hasFile:
PromptServer.instance.send_sync("easyuse-toast", {"content": "Removed SuccessFully", "type":'success'})
else:
PromptServer.instance.send_sync("easyuse-toast", {"content": "Removed Failed", "type": 'error'})
return ()
try:
from comfy_execution.graph_utils import GraphBuilder, is_link
except:
GraphBuilder = None
class loadImagesForLoop:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"directory": ("STRING", {"default": ""}),
},
"optional": {
"start_index": ("INT", {"default": 0, "min": 0, "step": 1}),
"limit": ("INT", {"default":-1, "min":-1, "max": 10000}),
"initial_value1": (any_type,),
"initial_value2": (any_type,),
},
"hidden": {
"initial_value0": (any_type,),
"prompt": "PROMPT",
"extra_pnginfo": "EXTRA_PNGINFO",
"unique_id": "UNIQUE_ID"
}
}
RETURN_TYPES = ByPassTypeTuple(tuple(["FLOW_CONTROL", "INT", "IMAGE", "MASK", "STRING", any_type, any_type]))
RETURN_NAMES = ByPassTypeTuple(tuple(["flow", "index", "image", "mask", "name", "value1", "value2"]))
FUNCTION = "load_images"
CATEGORY = "image"
def load_images(self, directory: str, start_index: int = 0, limit: int =-1, prompt=None, extra_pnginfo=None, unique_id=None, **kwargs):
if not os.path.isdir(directory):
raise FileNotFoundError(f"Directory '{directory}' cannot be found.")
dir_files = os.listdir(directory)
if len(dir_files) == 0:
raise FileNotFoundError(f"No files in directory '{directory}'.")
# Filter files by extension
valid_extensions = ['.jpg', '.jpeg', '.png', '.webp']
dir_files = [f for f in dir_files if any(f.lower().endswith(ext) for ext in valid_extensions)]
dir_files = sorted(dir_files)
dir_files = [os.path.join(directory, x) for x in dir_files]
graph = GraphBuilder()
index = 0
# unique_id = unique_id.split('.')[len(unique_id.split('.')) - 1] if "." in unique_id else unique_id
# update_cache('forloop' + str(unique_id), 'forloop', total)
if "initial_value0" in kwargs:
index = kwargs["initial_value0"]
# start at start_index
image_path = dir_files[start_index+index]
name = os.path.splitext(os.path.basename(image_path))[0]
i = Image.open(image_path)
i = ImageOps.exif_transpose(i)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
while_open = graph.node("easy whileLoopStart", condition=True, initial_value0=index, initial_value1=kwargs.get('initial_value1',None), initial_value2=kwargs.get('initial_value2',None))
outputs = [kwargs.get('initial_value1',None), kwargs.get('initial_value2',None)]
return {
"result": tuple(["stub", index, image, mask, name] + outputs),
"expand": graph.finalize(),
}
# 姿势编辑器
# class poseEditor:
# @classmethod
# def INPUT_TYPES(self):
# temp_dir = folder_paths.get_temp_directory()
#
# if not os.path.isdir(temp_dir):
# os.makedirs(temp_dir)
#
# temp_dir = folder_paths.get_temp_directory()
#
# return {"required":
# {"image": (sorted(os.listdir(temp_dir)),)},
# }
#
# RETURN_TYPES = ("IMAGE",)
# FUNCTION = "output_pose"
#
# CATEGORY = "EasyUse/🚫 Deprecated"
#
# def output_pose(self, image):
# image_path = os.path.join(folder_paths.get_temp_directory(), image)
# # print(f"Create: {image_path}")
#
# i = Image.open(image_path)
# image = i.convert("RGB")
# image = np.array(image).astype(np.float32) / 255.0
# image = torch.from_numpy(image)[None,]
#
# return (image,)
#
# @classmethod
# def IS_CHANGED(self, image):
# image_path = os.path.join(
# folder_paths.get_temp_directory(), image)
# # print(f'Change: {image_path}')
#
# m = hashlib.sha256()
# with open(image_path, 'rb') as f:
# m.update(f.read())
# return m.digest().hex()
class saveImageLazy():
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.compress_level = 4
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE",),
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
"save_metadata": ("BOOLEAN", {"default": True}),
},
"optional":{},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
OUTPUT_NODE = False
FUNCTION = "save"
CATEGORY = "EasyUse/Image"
def save(self, images, filename_prefix, save_metadata, prompt=None, extra_pnginfo=None):
extension = 'png'
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
results = list()
for (batch_number, image) in enumerate(images):
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = None
filename_with_batch_num = filename.replace(
"%batch_num%", str(batch_number))
counter = 1
if os.path.exists(full_output_folder) and os.listdir(full_output_folder):
filtered_filenames = list(filter(
lambda filename: filename.startswith(
filename_with_batch_num + "_")
and filename[len(filename_with_batch_num) + 1:-4].isdigit(),
os.listdir(full_output_folder)
))
if filtered_filenames:
max_counter = max(
int(filename[len(filename_with_batch_num) + 1:-4])
for filename in filtered_filenames
)
counter = max_counter + 1
file = f"{filename_with_batch_num}_{counter:05}.{extension}"
save_path = os.path.join(full_output_folder, file)
if save_metadata:
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(
x, json.dumps(extra_pnginfo[x]))
img.save(save_path, pnginfo=metadata)
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
return {"ui": {"images": results} , "result": (images,)}
NODE_CLASS_MAPPINGS = {
"easy imageInsetCrop": imageInsetCrop,
"easy imageCount": imageCount,
"easy imageSize": imageSize,
"easy imageSizeBySide": imageSizeBySide,
"easy imageSizeByLongerSide": imageSizeByLongerSide,
"easy imagePixelPerfect": imagePixelPerfect,
"easy imageScaleDown": imageScaleDown,
"easy imageScaleDownBy": imageScaleDownBy,
"easy imageScaleDownToSize": imageScaleDownToSize,
"easy imageScaleToNormPixels": imageScaleToNormPixels,
"easy imageRatio": imageRatio,
"easy imageConcat": imageConcat,
"easy imageListToImageBatch": imageListToImageBatch,
"easy imageBatchToImageList": imageBatchToImageList,
"easy imageSplitList": imageSplitList,
"easy imageSplitGrid": imageSplitGrid,
"easy imagesSplitImage": imagesSplitImage,
"easy imageSplitTiles": imageSplitTiles,
"easy imageTilesFromBatch": imageTilesFromBatch,
"easy imageCropFromMask": imageCropFromMask,
"easy imageUncropFromBBOX": imageUncropFromBBOX,
"easy imageSave": imageSaveSimple,
"easy imageRemBg": imageRemBg,
"easy imageChooser": imageChooser,
"easy imageColorMatch": imageColorMatch,
"easy imageDetailTransfer": imageDetailTransfer,
"easy imageInterrogator": imageInterrogator,
"easy loadImagesForLoop": loadImagesForLoop,
"easy loadImageBase64": loadImageBase64,
"easy imageToBase64": imageToBase64,
"easy joinImageBatch": JoinImageBatch,
"easy humanSegmentation": humanSegmentation,
"easy removeLocalImage": removeLocalImage,
"easy saveImageLazy": saveImageLazy,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"easy imageInsetCrop": "ImageInsetCrop",
"easy imageCount": "ImageCount",
"easy imageSize": "ImageSize",
"easy imageSizeBySide": "ImageSize (Side)",
"easy imageSizeByLongerSide": "ImageSize (LongerSide)",
"easy imagePixelPerfect": "ImagePixelPerfect",
"easy imageScaleDown": "Image Scale Down",
"easy imageScaleDownBy": "Image Scale Down By",
"easy imageScaleDownToSize": "Image Scale Down To Size",
"easy imageScaleToNormPixels": "ImageScaleToNormPixels",
"easy imageRatio": "ImageRatio",
"easy imageHSVMask": "ImageHSVMask",
"easy imageConcat": "imageConcat",
"easy imageListToImageBatch": "Image List To Image Batch",
"easy imageBatchToImageList": "Image Batch To Image List",
"easy imageSplitList": "imageSplitList",
"easy imageSplitGrid": "imageSplitGrid",
"easy imageSplitTiles": "imageSplitTiles",
"easy imageTilesFromBatch": "imageTilesFromBatch",
"easy imagesSplitImage": "imagesSplitImage",
"easy imageCropFromMask": "imageCropFromMask",
"easy imageUncropFromBBOX": "imageUncropFromBBOX",
"easy imageSave": "Save Image (Simple)",
"easy imageRemBg": "Image Remove Bg",
"easy imageChooser": "Image Chooser",
"easy imageColorMatch": "Image Color Match",
"easy imageDetailTransfer": "Image Detail Transfer",
"easy imageInterrogator": "Image To Prompt",
"easy joinImageBatch": "JoinImageBatch",
"easy loadImageBase64": "Load Image (Base64)",
"easy loadImagesForLoop": "Load Images For Loop",
"easy imageToBase64": "Image To Base64",
"easy humanSegmentation": "Human Segmentation",
"easy removeLocalImage": "Remove Local Image",
"easy saveImageLazy": "Save Image (Lazy)",
} |