File size: 14,481 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import json
import os
import torch
import subprocess
import sys
import comfy.supported_models
import comfy.model_patcher
import comfy.model_management
import comfy.model_detection as model_detection
import comfy.model_base as model_base
from comfy.model_base import sdxl_pooled, CLIPEmbeddingNoiseAugmentation, Timestep, ModelType
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
from comfy.clip_vision import ClipVisionModel, Output
from comfy.utils import load_torch_file
from .chatglm.modeling_chatglm import ChatGLMModel, ChatGLMConfig
from .chatglm.tokenization_chatglm import ChatGLMTokenizer

class KolorsUNetModel(UNetModel):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.encoder_hid_proj = torch.nn.Linear(4096, 2048, bias=True)

    def forward(self, *args, **kwargs):
        with torch.cuda.amp.autocast(enabled=True):
            if "context" in kwargs:
                kwargs["context"] = self.encoder_hid_proj(kwargs["context"])
            result = super().forward(*args, **kwargs)
            return result

class KolorsSDXL(model_base.SDXL):
    def __init__(self, model_config, model_type=ModelType.EPS, device=None):
        model_base.BaseModel.__init__(self, model_config, model_type, device=device, unet_model=KolorsUNetModel)
        self.embedder = Timestep(256)
        self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})

    def encode_adm(self, **kwargs):
        clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
        width = kwargs.get("width", 768)
        height = kwargs.get("height", 768)
        crop_w = kwargs.get("crop_w", 0)
        crop_h = kwargs.get("crop_h", 0)
        target_width = kwargs.get("target_width", width)
        target_height = kwargs.get("target_height", height)

        out = []
        out.append(self.embedder(torch.Tensor([height])))
        out.append(self.embedder(torch.Tensor([width])))
        out.append(self.embedder(torch.Tensor([crop_h])))
        out.append(self.embedder(torch.Tensor([crop_w])))
        out.append(self.embedder(torch.Tensor([target_height])))
        out.append(self.embedder(torch.Tensor([target_width])))
        flat = torch.flatten(torch.cat(out)).unsqueeze(
            dim=0).repeat(clip_pooled.shape[0], 1)
        return torch.cat((clip_pooled.to(flat.device), flat), dim=1)

class Kolors(comfy.supported_models.SDXL):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 0, 2, 2, 10, 10],
        "context_dim": 2048,
        "adm_in_channels": 5632,
        "use_temporal_attention": False,
    }

    def get_model(self, state_dict, prefix="", device=None):
        out = KolorsSDXL(self, model_type=self.model_type(state_dict, prefix), device=device, )
        out.__class__ = model_base.SDXL
        if self.inpaint_model():
            out.set_inpaint()
        return out

def kolors_unet_config_from_diffusers_unet(state_dict, dtype=None):
    match = {}
    transformer_depth = []

    attn_res = 1
    count_blocks = model_detection.count_blocks
    down_blocks = count_blocks(state_dict, "down_blocks.{}")
    for i in range(down_blocks):
        attn_blocks = count_blocks(
            state_dict, "down_blocks.{}.attentions.".format(i) + '{}')
        res_blocks = count_blocks(
            state_dict, "down_blocks.{}.resnets.".format(i) + '{}')
        for ab in range(attn_blocks):
            transformer_count = count_blocks(
                state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}')
            transformer_depth.append(transformer_count)
            if transformer_count > 0:
                match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(
                    i, ab)].shape[1]

        attn_res *= 2
        if attn_blocks == 0:
            for i in range(res_blocks):
                transformer_depth.append(0)

    match["transformer_depth"] = transformer_depth

    match["model_channels"] = state_dict["conv_in.weight"].shape[0]
    match["in_channels"] = state_dict["conv_in.weight"].shape[1]
    match["adm_in_channels"] = None
    if "class_embedding.linear_1.weight" in state_dict:
        match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1]
    elif "add_embedding.linear_1.weight" in state_dict:
        match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1]

    Kolors = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
              'num_classes': 'sequential', 'adm_in_channels': 5632, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
              'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
              'use_temporal_attention': False, 'use_temporal_resblock': False}

    Kolors_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True,
                      'legacy': False,
                      'num_classes': 'sequential', 'adm_in_channels': 5632, 'dtype': dtype, 'in_channels': 9,
                      'model_channels': 320,
                      'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4],
                      'transformer_depth_middle': 10,
                      'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
                      'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
                      'use_temporal_attention': False, 'use_temporal_resblock': False}

    Kolors_ip2p = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True,
                   'legacy': False,
                   'num_classes': 'sequential', 'adm_in_channels': 5632, 'dtype': dtype, 'in_channels': 8,
                   'model_channels': 320,
                   'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4],
                   'transformer_depth_middle': 10,
                   'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
                   'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
                   'use_temporal_attention': False, 'use_temporal_resblock': False}

    SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True,
            'legacy': False,
            'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4,
            'model_channels': 320,
            'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4],
            'transformer_depth_middle': 10,
            'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
            'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
            'use_temporal_attention': False, 'use_temporal_resblock': False}

    SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True,
                     'legacy': False,
                     'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4,
                     'model_channels': 320,
                     'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4],
                     'transformer_depth_middle': 1,
                     'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
                     'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1],
                     'use_temporal_attention': False, 'use_temporal_resblock': False}

    SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True,
                       'legacy': False,
                       'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4,
                       'model_channels': 320,
                       'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4],
                       'transformer_depth_middle': 0,
                       'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1,
                       'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0],
                       'use_temporal_attention': False, 'use_temporal_resblock': False}

    supported_models = [Kolors, Kolors_inpaint,
                        Kolors_ip2p, SDXL, SDXL_mid_cnet, SDXL_small_cnet]


    for unet_config in supported_models:
        matches = True
        for k in match:
            if match[k] != unet_config[k]:
                # print("key {} does not match".format(k), match[k], "||", unet_config[k])
                matches = False
                break
        if matches:
            return model_detection.convert_config(unet_config)
    return None

# chatglm3 model
class chatGLM3Model(torch.nn.Module):
    def __init__(self, textmodel_json_config=None, device='cpu', offload_device='cpu', model_path=None):
        super().__init__()
        if model_path is None:
            raise ValueError("model_path is required")
        self.device = device
        if textmodel_json_config is None:
            textmodel_json_config = os.path.join(
                os.path.dirname(os.path.realpath(__file__)),
                "chatglm",
                "config_chatglm.json"
            )
        with open(textmodel_json_config, 'r') as file:
            config = json.load(file)
        textmodel_json_config = ChatGLMConfig(**config)
        is_accelerate_available = False
        try:
            from accelerate import init_empty_weights
            from accelerate.utils import set_module_tensor_to_device
            is_accelerate_available = True
        except:
            pass

        from contextlib import nullcontext
        with (init_empty_weights() if is_accelerate_available else nullcontext()):
            with torch.no_grad():
                print('torch version:', torch.__version__)
                self.text_encoder = ChatGLMModel(textmodel_json_config).eval()
                if '4bit' in model_path:
                    try:
                        import cpm_kernels
                    except ImportError:
                        print("Installing cpm_kernels...")
                        subprocess.run([sys.executable, "-m", "pip", "install", "cpm_kernels"], check=True)
                        pass
                    self.text_encoder.quantize(4)
                elif '8bit' in model_path:
                    self.text_encoder.quantize(8)

        sd = load_torch_file(model_path)
        if is_accelerate_available:
            for key in sd:
                set_module_tensor_to_device(self.text_encoder, key, device=offload_device, value=sd[key])
        else:
            print("WARNING: Accelerate not available, use load_state_dict load model")
            self.text_encoder.load_state_dict()

def load_chatglm3(model_path=None):
    if model_path is None:
        return

    load_device = comfy.model_management.text_encoder_device()
    offload_device = comfy.model_management.text_encoder_offload_device()

    glm3model = chatGLM3Model(
        device=load_device,
        offload_device=offload_device,
        model_path=model_path
    )
    tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'chatglm', "tokenizer")
    tokenizer = ChatGLMTokenizer.from_pretrained(tokenizer_path)
    text_encoder = glm3model.text_encoder
    return {"text_encoder":text_encoder, "tokenizer":tokenizer}


# clipvision model
def load_clipvision_vitl_336(path):
    sd = load_torch_file(path)
    if "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
        json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
    else:
        raise Exception("Unsupported clip vision model")
    clip = ClipVisionModel(json_config)
    m, u = clip.load_sd(sd)
    if len(m) > 0:
        print("missing clip vision: {}".format(m))
    u = set(u)
    keys = list(sd.keys())
    for k in keys:
        if k not in u:
            t = sd.pop(k)
            del t
    return clip

class applyKolorsUnet:
    def __enter__(self):
        import comfy.ldm.modules.diffusionmodules.openaimodel
        import comfy.utils
        import comfy.clip_vision

        self.original_UNET_MAP_BASIC = comfy.utils.UNET_MAP_BASIC.copy()
        comfy.utils.UNET_MAP_BASIC.add(("encoder_hid_proj.weight", "encoder_hid_proj.weight"),)
        comfy.utils.UNET_MAP_BASIC.add(("encoder_hid_proj.bias", "encoder_hid_proj.bias"),)

        self.original_unet_config_from_diffusers_unet = model_detection.unet_config_from_diffusers_unet
        model_detection.unet_config_from_diffusers_unet = kolors_unet_config_from_diffusers_unet

        import comfy.supported_models
        self.original_supported_models = comfy.supported_models.models
        comfy.supported_models.models = [Kolors]

        self.original_load_clipvision_from_sd = comfy.clip_vision.load_clipvision_from_sd
        comfy.clip_vision.load_clipvision_from_sd = load_clipvision_vitl_336

    def __exit__(self, type, value, traceback):
        import comfy.ldm.modules.diffusionmodules.openaimodel
        import comfy.utils
        import comfy.supported_models
        import comfy.clip_vision

        comfy.utils.UNET_MAP_BASIC = self.original_UNET_MAP_BASIC

        model_detection.unet_config_from_diffusers_unet = self.original_unet_config_from_diffusers_unet
        comfy.supported_models.models = self.original_supported_models

        comfy.clip_vision.load_clipvision_from_sd = self.original_load_clipvision_from_sd


def is_kolors_model(model):
    unet_config = model.model.model_config.unet_config
    if unet_config and "adm_in_channels" in unet_config and unet_config["adm_in_channels"] == 5632:
        return True
    else:
        return False