File size: 9,853 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#credit to huchenlei for this module
#from https://github.com/huchenlei/ComfyUI-layerdiffuse
import torch
import comfy.model_management
import comfy.lora
import copy
from typing import Optional
from enum import Enum
from comfy.utils import load_torch_file
from comfy.conds import CONDRegular
from comfy_extras.nodes_compositing import JoinImageWithAlpha
from .model import ModelPatcher, TransparentVAEDecoder, calculate_weight_adjust_channel
from .attension_sharing import AttentionSharingPatcher
from ..config import LAYER_DIFFUSION, LAYER_DIFFUSION_DIR, LAYER_DIFFUSION_VAE
from ..libs.utils import to_lora_patch_dict, get_local_filepath, get_sd_version

load_layer_model_state_dict = load_torch_file
class LayerMethod(Enum):
    FG_ONLY_ATTN = "Attention Injection"
    FG_ONLY_CONV = "Conv Injection"
    FG_TO_BLEND = "Foreground"
    FG_BLEND_TO_BG = "Foreground to Background"
    BG_TO_BLEND = "Background"
    BG_BLEND_TO_FG = "Background to Foreground"
    EVERYTHING = "Everything"

class LayerDiffuse:

    def __init__(self) -> None:
        self.vae_transparent_decoder = None
        self.frames = 1

    def get_layer_diffusion_method(self, method, has_blend_latent):
        method = LayerMethod(method)
        if method == LayerMethod.BG_TO_BLEND and has_blend_latent:
            method = LayerMethod.BG_BLEND_TO_FG
        elif method == LayerMethod.FG_TO_BLEND and has_blend_latent:
            method = LayerMethod.FG_BLEND_TO_BG
        return method

    def apply_layer_c_concat(self, cond, uncond, c_concat):
        def write_c_concat(cond):
            new_cond = []
            for t in cond:
                n = [t[0], t[1].copy()]
                if "model_conds" not in n[1]:
                    n[1]["model_conds"] = {}
                n[1]["model_conds"]["c_concat"] = CONDRegular(c_concat)
                new_cond.append(n)
            return new_cond

        return (write_c_concat(cond), write_c_concat(uncond))

    def apply_layer_diffusion(self, model: ModelPatcher, method, weight, samples, blend_samples, positive, negative, image=None, additional_cond=(None, None, None)):
        control_img: Optional[torch.TensorType] = None
        sd_version = get_sd_version(model)
        model_url = LAYER_DIFFUSION[method.value][sd_version]["model_url"]

        if image is not None:
            image = image.movedim(-1, 1)

        try:
            if hasattr(comfy.lora, "calculate_weight"):
                comfy.lora.calculate_weight = calculate_weight_adjust_channel(comfy.lora.calculate_weight)
            else:
                ModelPatcher.calculate_weight = calculate_weight_adjust_channel(ModelPatcher.calculate_weight)
        except:
            pass

        if method in [LayerMethod.FG_ONLY_CONV, LayerMethod.FG_ONLY_ATTN] and sd_version == 'sd1':
            self.frames = 1
        elif method in [LayerMethod.BG_TO_BLEND, LayerMethod.FG_TO_BLEND, LayerMethod.BG_BLEND_TO_FG, LayerMethod.FG_BLEND_TO_BG] and sd_version == 'sd1':
            self.frames = 2
            batch_size, _, height, width = samples['samples'].shape
            if batch_size % 2 != 0:
                raise Exception(f"The batch size should be a multiple of 2. 批次大小需为2的倍数")
            control_img = image
        elif method == LayerMethod.EVERYTHING and sd_version == 'sd1':
            batch_size, _, height, width = samples['samples'].shape
            self.frames = 3
            if batch_size % 3 != 0:
                raise Exception(f"The batch size should be a multiple of 3. 批次大小需为3的倍数")
        if model_url is None:
            raise Exception(f"{method.value} is not supported for {sd_version} model")

        model_path = get_local_filepath(model_url, LAYER_DIFFUSION_DIR)
        layer_lora_state_dict = load_layer_model_state_dict(model_path)
        work_model = model.clone()
        if sd_version == 'sd1':
            patcher = AttentionSharingPatcher(
                work_model, self.frames, use_control=control_img is not None
            )
            patcher.load_state_dict(layer_lora_state_dict, strict=True)
            if control_img is not None:
                patcher.set_control(control_img)
        else:
            layer_lora_patch_dict = to_lora_patch_dict(layer_lora_state_dict)
            work_model.add_patches(layer_lora_patch_dict, weight)

        # cond_contact
        if method in [LayerMethod.FG_ONLY_ATTN, LayerMethod.FG_ONLY_CONV]:
            samp_model = work_model
        elif sd_version == 'sdxl':
            if method in [LayerMethod.BG_TO_BLEND, LayerMethod.FG_TO_BLEND]:
                c_concat = model.model.latent_format.process_in(samples["samples"])
            else:
                c_concat = model.model.latent_format.process_in(torch.cat([samples["samples"], blend_samples["samples"]], dim=1))
            samp_model, positive, negative = (work_model,) + self.apply_layer_c_concat(positive, negative, c_concat)
        elif sd_version == 'sd1':
            if method in [LayerMethod.BG_TO_BLEND, LayerMethod.BG_BLEND_TO_FG]:
                additional_cond = (additional_cond[0], None)
            elif method in [LayerMethod.FG_TO_BLEND, LayerMethod.FG_BLEND_TO_BG]:
                additional_cond = (additional_cond[1], None)

            work_model.model_options.setdefault("transformer_options", {})
            work_model.model_options["transformer_options"]["cond_overwrite"] = [
                cond[0][0] if cond is not None else None
                for cond in additional_cond
            ]
            samp_model = work_model

        return samp_model, positive, negative

    def join_image_with_alpha(self, image, alpha):
        out = image.movedim(-1, 1)
        if out.shape[1] == 3:  # RGB
            out = torch.cat([out, torch.ones_like(out[:, :1, :, :])], dim=1)
        for i in range(out.shape[0]):
            out[i, 3, :, :] = alpha
        return out.movedim(1, -1)

    def image_to_alpha(self, image, latent):
        pixel = image.movedim(-1, 1)  # [B, H, W, C] => [B, C, H, W]
        decoded = []
        sub_batch_size = 16
        for start_idx in range(0, latent.shape[0], sub_batch_size):
            decoded.append(
                self.vae_transparent_decoder.decode_pixel(
                    pixel[start_idx: start_idx + sub_batch_size],
                    latent[start_idx: start_idx + sub_batch_size],
                )
            )
        pixel_with_alpha = torch.cat(decoded, dim=0)
        # [B, C, H, W] => [B, H, W, C]
        pixel_with_alpha = pixel_with_alpha.movedim(1, -1)
        image = pixel_with_alpha[..., 1:]
        alpha = pixel_with_alpha[..., 0]

        alpha = 1.0 - alpha
        new_images, = JoinImageWithAlpha().join_image_with_alpha(image, alpha)
        return new_images, alpha

    def make_3d_mask(self, mask):
        if len(mask.shape) == 4:
            return mask.squeeze(0)

        elif len(mask.shape) == 2:
            return mask.unsqueeze(0)

        return mask

    def masks_to_list(self, masks):
        if masks is None:
            empty_mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
            return ([empty_mask],)

        res = []

        for mask in masks:
            res.append(mask)

        return [self.make_3d_mask(x) for x in res]

    def layer_diffusion_decode(self, layer_diffusion_method, latent, blend_samples, samp_images, model):
        alpha = []
        if layer_diffusion_method is not None:
            sd_version = get_sd_version(model)
            if sd_version not in ['sdxl', 'sd1']:
                raise Exception(f"Only SDXL and SD1.5 model supported for Layer Diffusion")
            method = self.get_layer_diffusion_method(layer_diffusion_method, blend_samples is not None)
            sd15_allow = True if sd_version == 'sd1' and method in [LayerMethod.FG_ONLY_ATTN, LayerMethod.EVERYTHING, LayerMethod.BG_TO_BLEND, LayerMethod.BG_BLEND_TO_FG] else False
            sdxl_allow = True if sd_version == 'sdxl' and method in [LayerMethod.FG_ONLY_CONV, LayerMethod.FG_ONLY_ATTN, LayerMethod.BG_BLEND_TO_FG] else False
            if sdxl_allow or sd15_allow:
                if self.vae_transparent_decoder is None:
                    model_url = LAYER_DIFFUSION_VAE['decode'][sd_version]["model_url"]
                    if model_url is None:
                        raise Exception(f"{method.value} is not supported for {sd_version} model")
                    decoder_file = get_local_filepath(model_url, LAYER_DIFFUSION_DIR)
                    self.vae_transparent_decoder = TransparentVAEDecoder(
                        load_torch_file(decoder_file),
                        device=comfy.model_management.get_torch_device(),
                        dtype=(torch.float16 if comfy.model_management.should_use_fp16() else torch.float32),
                    )
                if method in [LayerMethod.EVERYTHING, LayerMethod.BG_BLEND_TO_FG, LayerMethod.BG_TO_BLEND]:
                    new_images = []
                    sliced_samples = copy.copy({"samples": latent})
                    for index in range(len(samp_images)):
                        if index % self.frames == 0:
                            img = samp_images[index::self.frames]
                            alpha_images, _alpha = self.image_to_alpha(img, sliced_samples["samples"][index::self.frames])
                            alpha.append(self.make_3d_mask(_alpha[0]))
                            new_images.append(alpha_images[0])
                        else:
                            new_images.append(samp_images[index])
                else:
                    new_images, alpha = self.image_to_alpha(samp_images, latent)
            else:
                new_images = samp_images
        else:
            new_images = samp_images


        return (new_images, samp_images, alpha)