File size: 9,853 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
#credit to huchenlei for this module
#from https://github.com/huchenlei/ComfyUI-layerdiffuse
import torch
import comfy.model_management
import comfy.lora
import copy
from typing import Optional
from enum import Enum
from comfy.utils import load_torch_file
from comfy.conds import CONDRegular
from comfy_extras.nodes_compositing import JoinImageWithAlpha
from .model import ModelPatcher, TransparentVAEDecoder, calculate_weight_adjust_channel
from .attension_sharing import AttentionSharingPatcher
from ..config import LAYER_DIFFUSION, LAYER_DIFFUSION_DIR, LAYER_DIFFUSION_VAE
from ..libs.utils import to_lora_patch_dict, get_local_filepath, get_sd_version
load_layer_model_state_dict = load_torch_file
class LayerMethod(Enum):
FG_ONLY_ATTN = "Attention Injection"
FG_ONLY_CONV = "Conv Injection"
FG_TO_BLEND = "Foreground"
FG_BLEND_TO_BG = "Foreground to Background"
BG_TO_BLEND = "Background"
BG_BLEND_TO_FG = "Background to Foreground"
EVERYTHING = "Everything"
class LayerDiffuse:
def __init__(self) -> None:
self.vae_transparent_decoder = None
self.frames = 1
def get_layer_diffusion_method(self, method, has_blend_latent):
method = LayerMethod(method)
if method == LayerMethod.BG_TO_BLEND and has_blend_latent:
method = LayerMethod.BG_BLEND_TO_FG
elif method == LayerMethod.FG_TO_BLEND and has_blend_latent:
method = LayerMethod.FG_BLEND_TO_BG
return method
def apply_layer_c_concat(self, cond, uncond, c_concat):
def write_c_concat(cond):
new_cond = []
for t in cond:
n = [t[0], t[1].copy()]
if "model_conds" not in n[1]:
n[1]["model_conds"] = {}
n[1]["model_conds"]["c_concat"] = CONDRegular(c_concat)
new_cond.append(n)
return new_cond
return (write_c_concat(cond), write_c_concat(uncond))
def apply_layer_diffusion(self, model: ModelPatcher, method, weight, samples, blend_samples, positive, negative, image=None, additional_cond=(None, None, None)):
control_img: Optional[torch.TensorType] = None
sd_version = get_sd_version(model)
model_url = LAYER_DIFFUSION[method.value][sd_version]["model_url"]
if image is not None:
image = image.movedim(-1, 1)
try:
if hasattr(comfy.lora, "calculate_weight"):
comfy.lora.calculate_weight = calculate_weight_adjust_channel(comfy.lora.calculate_weight)
else:
ModelPatcher.calculate_weight = calculate_weight_adjust_channel(ModelPatcher.calculate_weight)
except:
pass
if method in [LayerMethod.FG_ONLY_CONV, LayerMethod.FG_ONLY_ATTN] and sd_version == 'sd1':
self.frames = 1
elif method in [LayerMethod.BG_TO_BLEND, LayerMethod.FG_TO_BLEND, LayerMethod.BG_BLEND_TO_FG, LayerMethod.FG_BLEND_TO_BG] and sd_version == 'sd1':
self.frames = 2
batch_size, _, height, width = samples['samples'].shape
if batch_size % 2 != 0:
raise Exception(f"The batch size should be a multiple of 2. 批次大小需为2的倍数")
control_img = image
elif method == LayerMethod.EVERYTHING and sd_version == 'sd1':
batch_size, _, height, width = samples['samples'].shape
self.frames = 3
if batch_size % 3 != 0:
raise Exception(f"The batch size should be a multiple of 3. 批次大小需为3的倍数")
if model_url is None:
raise Exception(f"{method.value} is not supported for {sd_version} model")
model_path = get_local_filepath(model_url, LAYER_DIFFUSION_DIR)
layer_lora_state_dict = load_layer_model_state_dict(model_path)
work_model = model.clone()
if sd_version == 'sd1':
patcher = AttentionSharingPatcher(
work_model, self.frames, use_control=control_img is not None
)
patcher.load_state_dict(layer_lora_state_dict, strict=True)
if control_img is not None:
patcher.set_control(control_img)
else:
layer_lora_patch_dict = to_lora_patch_dict(layer_lora_state_dict)
work_model.add_patches(layer_lora_patch_dict, weight)
# cond_contact
if method in [LayerMethod.FG_ONLY_ATTN, LayerMethod.FG_ONLY_CONV]:
samp_model = work_model
elif sd_version == 'sdxl':
if method in [LayerMethod.BG_TO_BLEND, LayerMethod.FG_TO_BLEND]:
c_concat = model.model.latent_format.process_in(samples["samples"])
else:
c_concat = model.model.latent_format.process_in(torch.cat([samples["samples"], blend_samples["samples"]], dim=1))
samp_model, positive, negative = (work_model,) + self.apply_layer_c_concat(positive, negative, c_concat)
elif sd_version == 'sd1':
if method in [LayerMethod.BG_TO_BLEND, LayerMethod.BG_BLEND_TO_FG]:
additional_cond = (additional_cond[0], None)
elif method in [LayerMethod.FG_TO_BLEND, LayerMethod.FG_BLEND_TO_BG]:
additional_cond = (additional_cond[1], None)
work_model.model_options.setdefault("transformer_options", {})
work_model.model_options["transformer_options"]["cond_overwrite"] = [
cond[0][0] if cond is not None else None
for cond in additional_cond
]
samp_model = work_model
return samp_model, positive, negative
def join_image_with_alpha(self, image, alpha):
out = image.movedim(-1, 1)
if out.shape[1] == 3: # RGB
out = torch.cat([out, torch.ones_like(out[:, :1, :, :])], dim=1)
for i in range(out.shape[0]):
out[i, 3, :, :] = alpha
return out.movedim(1, -1)
def image_to_alpha(self, image, latent):
pixel = image.movedim(-1, 1) # [B, H, W, C] => [B, C, H, W]
decoded = []
sub_batch_size = 16
for start_idx in range(0, latent.shape[0], sub_batch_size):
decoded.append(
self.vae_transparent_decoder.decode_pixel(
pixel[start_idx: start_idx + sub_batch_size],
latent[start_idx: start_idx + sub_batch_size],
)
)
pixel_with_alpha = torch.cat(decoded, dim=0)
# [B, C, H, W] => [B, H, W, C]
pixel_with_alpha = pixel_with_alpha.movedim(1, -1)
image = pixel_with_alpha[..., 1:]
alpha = pixel_with_alpha[..., 0]
alpha = 1.0 - alpha
new_images, = JoinImageWithAlpha().join_image_with_alpha(image, alpha)
return new_images, alpha
def make_3d_mask(self, mask):
if len(mask.shape) == 4:
return mask.squeeze(0)
elif len(mask.shape) == 2:
return mask.unsqueeze(0)
return mask
def masks_to_list(self, masks):
if masks is None:
empty_mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
return ([empty_mask],)
res = []
for mask in masks:
res.append(mask)
return [self.make_3d_mask(x) for x in res]
def layer_diffusion_decode(self, layer_diffusion_method, latent, blend_samples, samp_images, model):
alpha = []
if layer_diffusion_method is not None:
sd_version = get_sd_version(model)
if sd_version not in ['sdxl', 'sd1']:
raise Exception(f"Only SDXL and SD1.5 model supported for Layer Diffusion")
method = self.get_layer_diffusion_method(layer_diffusion_method, blend_samples is not None)
sd15_allow = True if sd_version == 'sd1' and method in [LayerMethod.FG_ONLY_ATTN, LayerMethod.EVERYTHING, LayerMethod.BG_TO_BLEND, LayerMethod.BG_BLEND_TO_FG] else False
sdxl_allow = True if sd_version == 'sdxl' and method in [LayerMethod.FG_ONLY_CONV, LayerMethod.FG_ONLY_ATTN, LayerMethod.BG_BLEND_TO_FG] else False
if sdxl_allow or sd15_allow:
if self.vae_transparent_decoder is None:
model_url = LAYER_DIFFUSION_VAE['decode'][sd_version]["model_url"]
if model_url is None:
raise Exception(f"{method.value} is not supported for {sd_version} model")
decoder_file = get_local_filepath(model_url, LAYER_DIFFUSION_DIR)
self.vae_transparent_decoder = TransparentVAEDecoder(
load_torch_file(decoder_file),
device=comfy.model_management.get_torch_device(),
dtype=(torch.float16 if comfy.model_management.should_use_fp16() else torch.float32),
)
if method in [LayerMethod.EVERYTHING, LayerMethod.BG_BLEND_TO_FG, LayerMethod.BG_TO_BLEND]:
new_images = []
sliced_samples = copy.copy({"samples": latent})
for index in range(len(samp_images)):
if index % self.frames == 0:
img = samp_images[index::self.frames]
alpha_images, _alpha = self.image_to_alpha(img, sliced_samples["samples"][index::self.frames])
alpha.append(self.make_3d_mask(_alpha[0]))
new_images.append(alpha_images[0])
else:
new_images.append(samp_images[index])
else:
new_images, alpha = self.image_to_alpha(samp_images, latent)
else:
new_images = samp_images
else:
new_images = samp_images
return (new_images, samp_images, alpha) |