File size: 14,622 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import torch.nn as nn
import torch
import cv2
import numpy as np
import comfy.model_management

from comfy.model_patcher import ModelPatcher
from tqdm import tqdm
from typing import Optional, Tuple
from ..libs.utils import install_package
from packaging import version

try:
    install_package("diffusers", "0.27.2", True, "0.25.0")

    from diffusers.configuration_utils import ConfigMixin, register_to_config
    from diffusers.models.modeling_utils import ModelMixin
    from diffusers import __version__
    if __version__:
        if version.parse(__version__) < version.parse("0.26.0"):
            from diffusers.models.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
        else:
            from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block

    import functools

    def zero_module(module):
        """
        Zero out the parameters of a module and return it.
        """
        for p in module.parameters():
            p.detach().zero_()
        return module


    class LatentTransparencyOffsetEncoder(torch.nn.Module):
        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
            self.blocks = torch.nn.Sequential(
                torch.nn.Conv2d(4, 32, kernel_size=3, padding=1, stride=1),
                nn.SiLU(),
                torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1),
                nn.SiLU(),
                torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2),
                nn.SiLU(),
                torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1),
                nn.SiLU(),
                torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2),
                nn.SiLU(),
                torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1),
                nn.SiLU(),
                torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),
                nn.SiLU(),
                torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
                nn.SiLU(),
                zero_module(torch.nn.Conv2d(256, 4, kernel_size=3, padding=1, stride=1)),
            )

        def __call__(self, x):
            return self.blocks(x)


    # 1024 * 1024 * 3 -> 16 * 16 * 512 -> 1024 * 1024 * 3
    class UNet1024(ModelMixin, ConfigMixin):
        @register_to_config
        def __init__(
                self,
                in_channels: int = 3,
                out_channels: int = 3,
                down_block_types: Tuple[str] = (
                        "DownBlock2D",
                        "DownBlock2D",
                        "DownBlock2D",
                        "DownBlock2D",
                        "AttnDownBlock2D",
                        "AttnDownBlock2D",
                        "AttnDownBlock2D",
                ),
                up_block_types: Tuple[str] = (
                        "AttnUpBlock2D",
                        "AttnUpBlock2D",
                        "AttnUpBlock2D",
                        "UpBlock2D",
                        "UpBlock2D",
                        "UpBlock2D",
                        "UpBlock2D",
                ),
                block_out_channels: Tuple[int] = (32, 32, 64, 128, 256, 512, 512),
                layers_per_block: int = 2,
                mid_block_scale_factor: float = 1,
                downsample_padding: int = 1,
                downsample_type: str = "conv",
                upsample_type: str = "conv",
                dropout: float = 0.0,
                act_fn: str = "silu",
                attention_head_dim: Optional[int] = 8,
                norm_num_groups: int = 4,
                norm_eps: float = 1e-5,
        ):
            super().__init__()

            # input
            self.conv_in = nn.Conv2d(
                in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)
            )
            self.latent_conv_in = zero_module(
                nn.Conv2d(4, block_out_channels[2], kernel_size=1)
            )

            self.down_blocks = nn.ModuleList([])
            self.mid_block = None
            self.up_blocks = nn.ModuleList([])

            # down
            output_channel = block_out_channels[0]
            for i, down_block_type in enumerate(down_block_types):
                input_channel = output_channel
                output_channel = block_out_channels[i]
                is_final_block = i == len(block_out_channels) - 1

                down_block = get_down_block(
                    down_block_type,
                    num_layers=layers_per_block,
                    in_channels=input_channel,
                    out_channels=output_channel,
                    temb_channels=None,
                    add_downsample=not is_final_block,
                    resnet_eps=norm_eps,
                    resnet_act_fn=act_fn,
                    resnet_groups=norm_num_groups,
                    attention_head_dim=(
                        attention_head_dim
                        if attention_head_dim is not None
                        else output_channel
                    ),
                    downsample_padding=downsample_padding,
                    resnet_time_scale_shift="default",
                    downsample_type=downsample_type,
                    dropout=dropout,
                )
                self.down_blocks.append(down_block)

            # mid
            self.mid_block = UNetMidBlock2D(
                in_channels=block_out_channels[-1],
                temb_channels=None,
                dropout=dropout,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift="default",
                attention_head_dim=(
                    attention_head_dim
                    if attention_head_dim is not None
                    else block_out_channels[-1]
                ),
                resnet_groups=norm_num_groups,
                attn_groups=None,
                add_attention=True,
            )

            # up
            reversed_block_out_channels = list(reversed(block_out_channels))
            output_channel = reversed_block_out_channels[0]
            for i, up_block_type in enumerate(up_block_types):
                prev_output_channel = output_channel
                output_channel = reversed_block_out_channels[i]
                input_channel = reversed_block_out_channels[
                    min(i + 1, len(block_out_channels) - 1)
                ]

                is_final_block = i == len(block_out_channels) - 1

                up_block = get_up_block(
                    up_block_type,
                    num_layers=layers_per_block + 1,
                    in_channels=input_channel,
                    out_channels=output_channel,
                    prev_output_channel=prev_output_channel,
                    temb_channels=None,
                    add_upsample=not is_final_block,
                    resnet_eps=norm_eps,
                    resnet_act_fn=act_fn,
                    resnet_groups=norm_num_groups,
                    attention_head_dim=(
                        attention_head_dim
                        if attention_head_dim is not None
                        else output_channel
                    ),
                    resnet_time_scale_shift="default",
                    upsample_type=upsample_type,
                    dropout=dropout,
                )
                self.up_blocks.append(up_block)
                prev_output_channel = output_channel

            # out
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
            self.conv_act = nn.SiLU()
            self.conv_out = nn.Conv2d(
                block_out_channels[0], out_channels, kernel_size=3, padding=1
            )

        def forward(self, x, latent):
            sample_latent = self.latent_conv_in(latent)
            sample = self.conv_in(x)
            emb = None

            down_block_res_samples = (sample,)
            for i, downsample_block in enumerate(self.down_blocks):
                if i == 3:
                    sample = sample + sample_latent

                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
                down_block_res_samples += res_samples

            sample = self.mid_block(sample, emb)

            for upsample_block in self.up_blocks:
                res_samples = down_block_res_samples[-len(upsample_block.resnets):]
                down_block_res_samples = down_block_res_samples[
                                         : -len(upsample_block.resnets)
                                         ]
                sample = upsample_block(sample, res_samples, emb)

            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
            sample = self.conv_out(sample)
            return sample


    def checkerboard(shape):
        return np.indices(shape).sum(axis=0) % 2


    def fill_checkerboard_bg(y: torch.Tensor) -> torch.Tensor:
        alpha = y[..., :1]
        fg = y[..., 1:]
        B, H, W, C = fg.shape
        cb = checkerboard(shape=(H // 64, W // 64))
        cb = cv2.resize(cb, (W, H), interpolation=cv2.INTER_NEAREST)
        cb = (0.5 + (cb - 0.5) * 0.1)[None, ..., None]
        cb = torch.from_numpy(cb).to(fg)
        vis = fg * alpha + cb * (1 - alpha)
        return vis


    class TransparentVAEDecoder:
        def __init__(self, sd, device, dtype):
            self.load_device = device
            self.dtype = dtype

            model = UNet1024(in_channels=3, out_channels=4)
            model.load_state_dict(sd, strict=True)
            model.to(self.load_device, dtype=self.dtype)
            model.eval()
            self.model = model

        @torch.no_grad()
        def estimate_single_pass(self, pixel, latent):
            y = self.model(pixel, latent)
            return y

        @torch.no_grad()
        def estimate_augmented(self, pixel, latent):
            args = [
                [False, 0],
                [False, 1],
                [False, 2],
                [False, 3],
                [True, 0],
                [True, 1],
                [True, 2],
                [True, 3],
            ]

            result = []

            for flip, rok in tqdm(args):
                feed_pixel = pixel.clone()
                feed_latent = latent.clone()

                if flip:
                    feed_pixel = torch.flip(feed_pixel, dims=(3,))
                    feed_latent = torch.flip(feed_latent, dims=(3,))

                feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3))
                feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3))

                eps = self.estimate_single_pass(feed_pixel, feed_latent).clip(0, 1)
                eps = torch.rot90(eps, k=-rok, dims=(2, 3))

                if flip:
                    eps = torch.flip(eps, dims=(3,))

                result += [eps]

            result = torch.stack(result, dim=0)
            median = torch.median(result, dim=0).values
            return median

        @torch.no_grad()
        def decode_pixel(
                self, pixel: torch.TensorType, latent: torch.TensorType
        ) -> torch.TensorType:
            # pixel.shape = [B, C=3, H, W]
            assert pixel.shape[1] == 3
            pixel_device = pixel.device
            pixel_dtype = pixel.dtype

            pixel = pixel.to(device=self.load_device, dtype=self.dtype)
            latent = latent.to(device=self.load_device, dtype=self.dtype)
            # y.shape = [B, C=4, H, W]
            y = self.estimate_augmented(pixel, latent)
            y = y.clip(0, 1)
            assert y.shape[1] == 4
            # Restore image to original device of input image.
            return y.to(pixel_device, dtype=pixel_dtype)


    def calculate_weight_adjust_channel(func):
        """Patches ComfyUI's LoRA weight application to accept multi-channel inputs."""
        @functools.wraps(func)
        def calculate_weight(
            patches, weight: torch.Tensor, key: str, intermediate_type=torch.float32
        ) -> torch.Tensor:
            weight = func(patches, weight, key, intermediate_type)

            for p in patches:
                alpha = p[0]
                v = p[1]

                # The recursion call should be handled in the main func call.
                if isinstance(v, list):
                    continue

                if len(v) == 1:
                    patch_type = "diff"
                elif len(v) == 2:
                    patch_type = v[0]
                    v = v[1]

                if patch_type == "diff":
                    w1 = v[0]
                    if all(
                            (
                                    alpha != 0.0,
                                    w1.shape != weight.shape,
                                    w1.ndim == weight.ndim == 4,
                            )
                    ):
                        new_shape = [max(n, m) for n, m in zip(weight.shape, w1.shape)]
                        print(
                            f"Merged with {key} channel changed from {weight.shape} to {new_shape}"
                        )
                        new_diff = alpha * comfy.model_management.cast_to_device(
                            w1, weight.device, weight.dtype
                        )
                        new_weight = torch.zeros(size=new_shape).to(weight)
                        new_weight[
                        : weight.shape[0],
                        : weight.shape[1],
                        : weight.shape[2],
                        : weight.shape[3],
                        ] = weight
                        new_weight[
                        : new_diff.shape[0],
                        : new_diff.shape[1],
                        : new_diff.shape[2],
                        : new_diff.shape[3],
                        ] += new_diff
                        new_weight = new_weight.contiguous().clone()
                        weight = new_weight
            return weight

        return calculate_weight


except ImportError:
    ModelMixin = None
    ConfigMixin = None
    TransparentVAEDecoder = None
    calculate_weight_adjust_channel = None
    print("\33[33mModule 'diffusers' load failed. If you don't have it installed, do it:\033[0m")
    print("\33[33mpip install diffusers\033[0m")