File size: 17,915 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import torch
import numpy as np
import re
import itertools

from comfy import model_management
from comfy.sdxl_clip import SDXLClipModel, SDXLRefinerClipModel, SDXLClipG
try:
    from comfy.text_encoders.sd3_clip import SD3ClipModel, T5XXLModel
except ImportError:
    from comfy.sd3_clip import SD3ClipModel, T5XXLModel

from nodes import NODE_CLASS_MAPPINGS, ConditioningConcat, ConditioningZeroOut, ConditioningSetTimestepRange, ConditioningCombine

def _grouper(n, iterable):
    it = iter(iterable)
    while True:
        chunk = list(itertools.islice(it, n))
        if not chunk:
            return
        yield chunk


def _norm_mag(w, n):
    d = w - 1
    return 1 + np.sign(d) * np.sqrt(np.abs(d) ** 2 / n)
    # return  np.sign(w) * np.sqrt(np.abs(w)**2 / n)


def divide_length(word_ids, weights):
    sums = dict(zip(*np.unique(word_ids, return_counts=True)))
    sums[0] = 1
    weights = [[_norm_mag(w, sums[id]) if id != 0 else 1.0
                for w, id in zip(x, y)] for x, y in zip(weights, word_ids)]
    return weights


def shift_mean_weight(word_ids, weights):
    delta = 1 - np.mean([w for x, y in zip(weights, word_ids) for w, id in zip(x, y) if id != 0])
    weights = [[w if id == 0 else w + delta
                for w, id in zip(x, y)] for x, y in zip(weights, word_ids)]
    return weights


def scale_to_norm(weights, word_ids, w_max):
    top = np.max(weights)
    w_max = min(top, w_max)
    weights = [[w_max if id == 0 else (w / top) * w_max
                for w, id in zip(x, y)] for x, y in zip(weights, word_ids)]
    return weights


def from_zero(weights, base_emb):
    weight_tensor = torch.tensor(weights, dtype=base_emb.dtype, device=base_emb.device)
    weight_tensor = weight_tensor.reshape(1, -1, 1).expand(base_emb.shape)
    return base_emb * weight_tensor


def mask_word_id(tokens, word_ids, target_id, mask_token):
    new_tokens = [[mask_token if wid == target_id else t
                   for t, wid in zip(x, y)] for x, y in zip(tokens, word_ids)]
    mask = np.array(word_ids) == target_id
    return (new_tokens, mask)


def batched_clip_encode(tokens, length, encode_func, num_chunks):
    embs = []
    for e in _grouper(32, tokens):
        enc, pooled = encode_func(e)
        enc = enc.reshape((len(e), length, -1))
        embs.append(enc)
    embs = torch.cat(embs)
    embs = embs.reshape((len(tokens) // num_chunks, length * num_chunks, -1))
    return embs


def from_masked(tokens, weights, word_ids, base_emb, length, encode_func, m_token=266):
    pooled_base = base_emb[0, length - 1:length, :]
    wids, inds = np.unique(np.array(word_ids).reshape(-1), return_index=True)
    weight_dict = dict((id, w)
                       for id, w in zip(wids, np.array(weights).reshape(-1)[inds])
                       if w != 1.0)

    if len(weight_dict) == 0:
        return torch.zeros_like(base_emb), base_emb[0, length - 1:length, :]

    weight_tensor = torch.tensor(weights, dtype=base_emb.dtype, device=base_emb.device)
    weight_tensor = weight_tensor.reshape(1, -1, 1).expand(base_emb.shape)

    # m_token = (clip.tokenizer.end_token, 1.0) if  clip.tokenizer.pad_with_end else (0,1.0)
    # TODO: find most suitable masking token here
    m_token = (m_token, 1.0)

    ws = []
    masked_tokens = []
    masks = []

    # create prompts
    for id, w in weight_dict.items():
        masked, m = mask_word_id(tokens, word_ids, id, m_token)
        masked_tokens.extend(masked)

        m = torch.tensor(m, dtype=base_emb.dtype, device=base_emb.device)
        m = m.reshape(1, -1, 1).expand(base_emb.shape)
        masks.append(m)

        ws.append(w)

    # batch process prompts
    embs = batched_clip_encode(masked_tokens, length, encode_func, len(tokens))
    masks = torch.cat(masks)

    embs = (base_emb.expand(embs.shape) - embs)
    pooled = embs[0, length - 1:length, :]

    embs *= masks
    embs = embs.sum(axis=0, keepdim=True)

    pooled_start = pooled_base.expand(len(ws), -1)
    ws = torch.tensor(ws).reshape(-1, 1).expand(pooled_start.shape)
    pooled = (pooled - pooled_start) * (ws - 1)
    pooled = pooled.mean(axis=0, keepdim=True)

    return ((weight_tensor - 1) * embs), pooled_base + pooled


def mask_inds(tokens, inds, mask_token):
    clip_len = len(tokens[0])
    inds_set = set(inds)
    new_tokens = [[mask_token if i * clip_len + j in inds_set else t
                   for j, t in enumerate(x)] for i, x in enumerate(tokens)]
    return new_tokens


def down_weight(tokens, weights, word_ids, base_emb, length, encode_func, m_token=266):
    w, w_inv = np.unique(weights, return_inverse=True)

    if np.sum(w < 1) == 0:
        return base_emb, tokens, base_emb[0, length - 1:length, :]
    # m_token = (clip.tokenizer.end_token, 1.0) if  clip.tokenizer.pad_with_end else (0,1.0)
    # using the comma token as a masking token seems to work better than aos tokens for SD 1.x
    m_token = (m_token, 1.0)

    masked_tokens = []

    masked_current = tokens
    for i in range(len(w)):
        if w[i] >= 1:
            continue
        masked_current = mask_inds(masked_current, np.where(w_inv == i)[0], m_token)
        masked_tokens.extend(masked_current)

    embs = batched_clip_encode(masked_tokens, length, encode_func, len(tokens))
    embs = torch.cat([base_emb, embs])
    w = w[w <= 1.0]
    w_mix = np.diff([0] + w.tolist())
    w_mix = torch.tensor(w_mix, dtype=embs.dtype, device=embs.device).reshape((-1, 1, 1))

    weighted_emb = (w_mix * embs).sum(axis=0, keepdim=True)
    return weighted_emb, masked_current, weighted_emb[0, length - 1:length, :]


def scale_emb_to_mag(base_emb, weighted_emb):
    norm_base = torch.linalg.norm(base_emb)
    norm_weighted = torch.linalg.norm(weighted_emb)
    embeddings_final = (norm_base / norm_weighted) * weighted_emb
    return embeddings_final


def recover_dist(base_emb, weighted_emb):
    fixed_std = (base_emb.std() / weighted_emb.std()) * (weighted_emb - weighted_emb.mean())
    embeddings_final = fixed_std + (base_emb.mean() - fixed_std.mean())
    return embeddings_final


def A1111_renorm(base_emb, weighted_emb):
    embeddings_final = (base_emb.mean() / weighted_emb.mean()) * weighted_emb
    return embeddings_final


def advanced_encode_from_tokens(tokenized, token_normalization, weight_interpretation, encode_func, m_token=266,
                                length=77, w_max=1.0, return_pooled=False, apply_to_pooled=False):
    tokens = [[t for t, _, _ in x] for x in tokenized]
    weights = [[w for _, w, _ in x] for x in tokenized]
    word_ids = [[wid for _, _, wid in x] for x in tokenized]

    # weight normalization
    # ====================

    # distribute down/up weights over word lengths
    if token_normalization.startswith("length"):
        weights = divide_length(word_ids, weights)

    # make mean of word tokens 1
    if token_normalization.endswith("mean"):
        weights = shift_mean_weight(word_ids, weights)

        # weight interpretation
    # =====================
    pooled = None

    if weight_interpretation == "comfy":
        weighted_tokens = [[(t, w) for t, w in zip(x, y)] for x, y in zip(tokens, weights)]
        weighted_emb, pooled_base = encode_func(weighted_tokens)
        pooled = pooled_base
    else:
        unweighted_tokens = [[(t, 1.0) for t, _, _ in x] for x in tokenized]
        base_emb, pooled_base = encode_func(unweighted_tokens)

    if weight_interpretation == "A1111":
        weighted_emb = from_zero(weights, base_emb)
        weighted_emb = A1111_renorm(base_emb, weighted_emb)
        pooled = pooled_base

    if weight_interpretation == "compel":
        pos_tokens = [[(t, w) if w >= 1.0 else (t, 1.0) for t, w in zip(x, y)] for x, y in zip(tokens, weights)]
        weighted_emb, _ = encode_func(pos_tokens)
        weighted_emb, _, pooled = down_weight(pos_tokens, weights, word_ids, weighted_emb, length, encode_func)

    if weight_interpretation == "comfy++":
        weighted_emb, tokens_down, _ = down_weight(unweighted_tokens, weights, word_ids, base_emb, length, encode_func)
        weights = [[w if w > 1.0 else 1.0 for w in x] for x in weights]
        # unweighted_tokens = [[(t,1.0) for t, _,_ in x] for x in tokens_down]
        embs, pooled = from_masked(unweighted_tokens, weights, word_ids, base_emb, length, encode_func)
        weighted_emb += embs

    if weight_interpretation == "down_weight":
        weights = scale_to_norm(weights, word_ids, w_max)
        weighted_emb, _, pooled = down_weight(unweighted_tokens, weights, word_ids, base_emb, length, encode_func)

    if return_pooled:
        if apply_to_pooled:
            return weighted_emb, pooled
        else:
            return weighted_emb, pooled_base
    return weighted_emb, None


def encode_token_weights_g(model, token_weight_pairs):
    return model.clip_g.encode_token_weights(token_weight_pairs)


def encode_token_weights_l(model, token_weight_pairs):
    l_out, pooled = model.clip_l.encode_token_weights(token_weight_pairs)
    return l_out, pooled

def encode_token_weights_t5(model, token_weight_pairs):
    return model.t5xxl.encode_token_weights(token_weight_pairs)


def encode_token_weights(model, token_weight_pairs, encode_func):
    if model.layer_idx is not None:
        # 2016 [c2cb8e88] 及以上版本去除了sdxl clip的clip_layer方法
        # if compare_revision(2016):
        model.cond_stage_model.set_clip_options({'layer': model.layer_idx})
        # else:
        # model.cond_stage_model.clip_layer(model.layer_idx)

    model_management.load_model_gpu(model.patcher)
    return encode_func(model.cond_stage_model, token_weight_pairs)

def prepareXL(embs_l, embs_g, pooled, clip_balance):
    l_w = 1 - max(0, clip_balance - .5) * 2
    g_w = 1 - max(0, .5 - clip_balance) * 2
    if embs_l is not None:
        return torch.cat([embs_l * l_w, embs_g * g_w], dim=-1), pooled
    else:
        return embs_g, pooled

def prepareSD3(out, pooled, clip_balance):
    lg_w = 1 - max(0, clip_balance - .5) * 2
    t5_w = 1 - max(0, .5 - clip_balance) * 2
    if out.shape[0] > 1:
        return torch.cat([out[0] * lg_w, out[1] * t5_w], dim=-1), pooled
    else:
        return out, pooled

def advanced_encode(clip, text, token_normalization, weight_interpretation, w_max=1.0, clip_balance=.5,
                    apply_to_pooled=True, width=1024, height=1024, crop_w=0, crop_h=0, target_width=1024, target_height=1024, a1111_prompt_style=False, steps=1):

    # Use clip text encode by smzNodes like same as a1111, when if you need installed the smzNodes
    if a1111_prompt_style:
        if "smZ CLIPTextEncode" in NODE_CLASS_MAPPINGS:
            cls = NODE_CLASS_MAPPINGS['smZ CLIPTextEncode']
            embeddings_final, = cls().encode(clip, text, weight_interpretation, True, True, False, False, 6, 1024, 1024, 0, 0, 1024, 1024, '', '', steps)
            return embeddings_final
        else:
            raise Exception(f"[smzNodes Not Found] you need to install 'ComfyUI-smzNodes'")

    time_start = 0
    time_end = 1
    match = re.search(r'TIMESTEP.*$', text)
    if match:
        timestep = match.group()
        timestep = timestep.split(' ')
        timestep = timestep[0]
        text = text.replace(timestep, '')
        value = timestep.split(':')
        if len(value) >= 3:
            time_start = float(value[1])
            time_end = float(value[2])
        elif len(value) == 2:
            time_start = float(value[1])
            time_end = 1
        elif len(value) == 1:
            time_start = 0.1
            time_end = 1

    pass3 = [x.strip() for x in text.split("BREAK")]
    pass3 = [x for x in pass3 if x != '']

    if len(pass3) == 0:
        pass3 = ['']

    # pass3_str = [f'[{x}]' for x in pass3]
    # print(f"CLIP: {str.join(' + ', pass3_str)}")

    conditioning = None

    for text in pass3:
        tokenized = clip.tokenize(text, return_word_ids=True)
        if SD3ClipModel and isinstance(clip.cond_stage_model, SD3ClipModel):
            lg_out = None
            pooled = None
            out = None

            if len(tokenized['l']) > 0 or len(tokenized['g']) > 0:
                if clip.cond_stage_model.clip_l is not None:
                    lg_out, l_pooled = advanced_encode_from_tokens(tokenized['l'],
                                                                           token_normalization,
                                                                           weight_interpretation,
                                                                           lambda x: encode_token_weights(clip, x, encode_token_weights_l),
                                                                           w_max=w_max, return_pooled=True,)
                else:
                    l_pooled = torch.zeros((1, 768), device=model_management.intermediate_device())

                if clip.cond_stage_model.clip_g is not None:
                    g_out, g_pooled = advanced_encode_from_tokens(tokenized['g'],
                               token_normalization,
                               weight_interpretation,
                               lambda x: encode_token_weights(clip, x, encode_token_weights_g),
                               w_max=w_max, return_pooled=True)
                    if lg_out is not None:
                        lg_out = torch.cat([lg_out, g_out], dim=-1)
                    else:
                        lg_out = torch.nn.functional.pad(g_out, (768, 0))
                else:
                    g_out = None
                    g_pooled = torch.zeros((1, 1280), device=model_management.intermediate_device())

                if lg_out is not None:
                    lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
                    out = lg_out
                pooled = torch.cat((l_pooled, g_pooled), dim=-1)

            # t5xxl
            if 't5xxl' in tokenized:
                t5_out, t5_pooled = advanced_encode_from_tokens(tokenized['t5xxl'],
                               token_normalization,
                               weight_interpretation,
                               lambda x: encode_token_weights(clip, x, encode_token_weights_t5),
                               w_max=w_max, return_pooled=True)
                if lg_out is not None:
                    out = torch.cat([lg_out, t5_out], dim=-2)
                else:
                    out = t5_out

            if out is None:
                out = torch.zeros((1, 77, 4096), device=model_management.intermediate_device())

            if pooled is None:
                pooled = torch.zeros((1, 768 + 1280), device=model_management.intermediate_device())

            embeddings_final, pooled = prepareSD3(out, pooled, clip_balance)
            cond = [[embeddings_final, {"pooled_output": pooled}]]

        elif isinstance(clip.cond_stage_model, (SDXLClipModel, SDXLRefinerClipModel, SDXLClipG)):
            embs_l = None
            embs_g = None
            pooled = None
            if 'l' in tokenized and isinstance(clip.cond_stage_model, SDXLClipModel):
                embs_l, _ = advanced_encode_from_tokens(tokenized['l'],
                                                        token_normalization,
                                                        weight_interpretation,
                                                        lambda x: encode_token_weights(clip, x, encode_token_weights_l),
                                                        w_max=w_max,
                                                        return_pooled=False)
            if 'g' in tokenized:
                embs_g, pooled = advanced_encode_from_tokens(tokenized['g'],
                                                             token_normalization,
                                                             weight_interpretation,
                                                             lambda x: encode_token_weights(clip, x,
                                                                                            encode_token_weights_g),
                                                             w_max=w_max,
                                                             return_pooled=True,
                                                             apply_to_pooled=apply_to_pooled)

            embeddings_final, pooled = prepareXL(embs_l, embs_g, pooled, clip_balance)

            cond = [[embeddings_final, {"pooled_output": pooled}]]
            # cond = [[embeddings_final,
            #                  {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w,
            #                   "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]]
        else:
            embeddings_final, pooled = advanced_encode_from_tokens(tokenized['l'],
                                                                   token_normalization,
                                                                   weight_interpretation,
                                                                   lambda x: encode_token_weights(clip, x, encode_token_weights_l),
                                                                   w_max=w_max,return_pooled=True,)
            cond = [[embeddings_final, {"pooled_output": pooled}]]

        if conditioning is not None:
            conditioning = ConditioningConcat().concat(conditioning, cond)[0]
        else:
            conditioning = cond

    # setTimeStepRange
    if time_start > 0 or time_end < 1:
        conditioning_2, = ConditioningSetTimestepRange().set_range(conditioning, 0, time_start)
        conditioning_1, = ConditioningZeroOut().zero_out(conditioning)
        conditioning_1, = ConditioningSetTimestepRange().set_range(conditioning_1, time_start, time_end)
        conditioning, = ConditioningCombine().combine(conditioning_1, conditioning_2)

    return conditioning