File size: 17,915 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import torch
import numpy as np
import re
import itertools
from comfy import model_management
from comfy.sdxl_clip import SDXLClipModel, SDXLRefinerClipModel, SDXLClipG
try:
from comfy.text_encoders.sd3_clip import SD3ClipModel, T5XXLModel
except ImportError:
from comfy.sd3_clip import SD3ClipModel, T5XXLModel
from nodes import NODE_CLASS_MAPPINGS, ConditioningConcat, ConditioningZeroOut, ConditioningSetTimestepRange, ConditioningCombine
def _grouper(n, iterable):
it = iter(iterable)
while True:
chunk = list(itertools.islice(it, n))
if not chunk:
return
yield chunk
def _norm_mag(w, n):
d = w - 1
return 1 + np.sign(d) * np.sqrt(np.abs(d) ** 2 / n)
# return np.sign(w) * np.sqrt(np.abs(w)**2 / n)
def divide_length(word_ids, weights):
sums = dict(zip(*np.unique(word_ids, return_counts=True)))
sums[0] = 1
weights = [[_norm_mag(w, sums[id]) if id != 0 else 1.0
for w, id in zip(x, y)] for x, y in zip(weights, word_ids)]
return weights
def shift_mean_weight(word_ids, weights):
delta = 1 - np.mean([w for x, y in zip(weights, word_ids) for w, id in zip(x, y) if id != 0])
weights = [[w if id == 0 else w + delta
for w, id in zip(x, y)] for x, y in zip(weights, word_ids)]
return weights
def scale_to_norm(weights, word_ids, w_max):
top = np.max(weights)
w_max = min(top, w_max)
weights = [[w_max if id == 0 else (w / top) * w_max
for w, id in zip(x, y)] for x, y in zip(weights, word_ids)]
return weights
def from_zero(weights, base_emb):
weight_tensor = torch.tensor(weights, dtype=base_emb.dtype, device=base_emb.device)
weight_tensor = weight_tensor.reshape(1, -1, 1).expand(base_emb.shape)
return base_emb * weight_tensor
def mask_word_id(tokens, word_ids, target_id, mask_token):
new_tokens = [[mask_token if wid == target_id else t
for t, wid in zip(x, y)] for x, y in zip(tokens, word_ids)]
mask = np.array(word_ids) == target_id
return (new_tokens, mask)
def batched_clip_encode(tokens, length, encode_func, num_chunks):
embs = []
for e in _grouper(32, tokens):
enc, pooled = encode_func(e)
enc = enc.reshape((len(e), length, -1))
embs.append(enc)
embs = torch.cat(embs)
embs = embs.reshape((len(tokens) // num_chunks, length * num_chunks, -1))
return embs
def from_masked(tokens, weights, word_ids, base_emb, length, encode_func, m_token=266):
pooled_base = base_emb[0, length - 1:length, :]
wids, inds = np.unique(np.array(word_ids).reshape(-1), return_index=True)
weight_dict = dict((id, w)
for id, w in zip(wids, np.array(weights).reshape(-1)[inds])
if w != 1.0)
if len(weight_dict) == 0:
return torch.zeros_like(base_emb), base_emb[0, length - 1:length, :]
weight_tensor = torch.tensor(weights, dtype=base_emb.dtype, device=base_emb.device)
weight_tensor = weight_tensor.reshape(1, -1, 1).expand(base_emb.shape)
# m_token = (clip.tokenizer.end_token, 1.0) if clip.tokenizer.pad_with_end else (0,1.0)
# TODO: find most suitable masking token here
m_token = (m_token, 1.0)
ws = []
masked_tokens = []
masks = []
# create prompts
for id, w in weight_dict.items():
masked, m = mask_word_id(tokens, word_ids, id, m_token)
masked_tokens.extend(masked)
m = torch.tensor(m, dtype=base_emb.dtype, device=base_emb.device)
m = m.reshape(1, -1, 1).expand(base_emb.shape)
masks.append(m)
ws.append(w)
# batch process prompts
embs = batched_clip_encode(masked_tokens, length, encode_func, len(tokens))
masks = torch.cat(masks)
embs = (base_emb.expand(embs.shape) - embs)
pooled = embs[0, length - 1:length, :]
embs *= masks
embs = embs.sum(axis=0, keepdim=True)
pooled_start = pooled_base.expand(len(ws), -1)
ws = torch.tensor(ws).reshape(-1, 1).expand(pooled_start.shape)
pooled = (pooled - pooled_start) * (ws - 1)
pooled = pooled.mean(axis=0, keepdim=True)
return ((weight_tensor - 1) * embs), pooled_base + pooled
def mask_inds(tokens, inds, mask_token):
clip_len = len(tokens[0])
inds_set = set(inds)
new_tokens = [[mask_token if i * clip_len + j in inds_set else t
for j, t in enumerate(x)] for i, x in enumerate(tokens)]
return new_tokens
def down_weight(tokens, weights, word_ids, base_emb, length, encode_func, m_token=266):
w, w_inv = np.unique(weights, return_inverse=True)
if np.sum(w < 1) == 0:
return base_emb, tokens, base_emb[0, length - 1:length, :]
# m_token = (clip.tokenizer.end_token, 1.0) if clip.tokenizer.pad_with_end else (0,1.0)
# using the comma token as a masking token seems to work better than aos tokens for SD 1.x
m_token = (m_token, 1.0)
masked_tokens = []
masked_current = tokens
for i in range(len(w)):
if w[i] >= 1:
continue
masked_current = mask_inds(masked_current, np.where(w_inv == i)[0], m_token)
masked_tokens.extend(masked_current)
embs = batched_clip_encode(masked_tokens, length, encode_func, len(tokens))
embs = torch.cat([base_emb, embs])
w = w[w <= 1.0]
w_mix = np.diff([0] + w.tolist())
w_mix = torch.tensor(w_mix, dtype=embs.dtype, device=embs.device).reshape((-1, 1, 1))
weighted_emb = (w_mix * embs).sum(axis=0, keepdim=True)
return weighted_emb, masked_current, weighted_emb[0, length - 1:length, :]
def scale_emb_to_mag(base_emb, weighted_emb):
norm_base = torch.linalg.norm(base_emb)
norm_weighted = torch.linalg.norm(weighted_emb)
embeddings_final = (norm_base / norm_weighted) * weighted_emb
return embeddings_final
def recover_dist(base_emb, weighted_emb):
fixed_std = (base_emb.std() / weighted_emb.std()) * (weighted_emb - weighted_emb.mean())
embeddings_final = fixed_std + (base_emb.mean() - fixed_std.mean())
return embeddings_final
def A1111_renorm(base_emb, weighted_emb):
embeddings_final = (base_emb.mean() / weighted_emb.mean()) * weighted_emb
return embeddings_final
def advanced_encode_from_tokens(tokenized, token_normalization, weight_interpretation, encode_func, m_token=266,
length=77, w_max=1.0, return_pooled=False, apply_to_pooled=False):
tokens = [[t for t, _, _ in x] for x in tokenized]
weights = [[w for _, w, _ in x] for x in tokenized]
word_ids = [[wid for _, _, wid in x] for x in tokenized]
# weight normalization
# ====================
# distribute down/up weights over word lengths
if token_normalization.startswith("length"):
weights = divide_length(word_ids, weights)
# make mean of word tokens 1
if token_normalization.endswith("mean"):
weights = shift_mean_weight(word_ids, weights)
# weight interpretation
# =====================
pooled = None
if weight_interpretation == "comfy":
weighted_tokens = [[(t, w) for t, w in zip(x, y)] for x, y in zip(tokens, weights)]
weighted_emb, pooled_base = encode_func(weighted_tokens)
pooled = pooled_base
else:
unweighted_tokens = [[(t, 1.0) for t, _, _ in x] for x in tokenized]
base_emb, pooled_base = encode_func(unweighted_tokens)
if weight_interpretation == "A1111":
weighted_emb = from_zero(weights, base_emb)
weighted_emb = A1111_renorm(base_emb, weighted_emb)
pooled = pooled_base
if weight_interpretation == "compel":
pos_tokens = [[(t, w) if w >= 1.0 else (t, 1.0) for t, w in zip(x, y)] for x, y in zip(tokens, weights)]
weighted_emb, _ = encode_func(pos_tokens)
weighted_emb, _, pooled = down_weight(pos_tokens, weights, word_ids, weighted_emb, length, encode_func)
if weight_interpretation == "comfy++":
weighted_emb, tokens_down, _ = down_weight(unweighted_tokens, weights, word_ids, base_emb, length, encode_func)
weights = [[w if w > 1.0 else 1.0 for w in x] for x in weights]
# unweighted_tokens = [[(t,1.0) for t, _,_ in x] for x in tokens_down]
embs, pooled = from_masked(unweighted_tokens, weights, word_ids, base_emb, length, encode_func)
weighted_emb += embs
if weight_interpretation == "down_weight":
weights = scale_to_norm(weights, word_ids, w_max)
weighted_emb, _, pooled = down_weight(unweighted_tokens, weights, word_ids, base_emb, length, encode_func)
if return_pooled:
if apply_to_pooled:
return weighted_emb, pooled
else:
return weighted_emb, pooled_base
return weighted_emb, None
def encode_token_weights_g(model, token_weight_pairs):
return model.clip_g.encode_token_weights(token_weight_pairs)
def encode_token_weights_l(model, token_weight_pairs):
l_out, pooled = model.clip_l.encode_token_weights(token_weight_pairs)
return l_out, pooled
def encode_token_weights_t5(model, token_weight_pairs):
return model.t5xxl.encode_token_weights(token_weight_pairs)
def encode_token_weights(model, token_weight_pairs, encode_func):
if model.layer_idx is not None:
# 2016 [c2cb8e88] 及以上版本去除了sdxl clip的clip_layer方法
# if compare_revision(2016):
model.cond_stage_model.set_clip_options({'layer': model.layer_idx})
# else:
# model.cond_stage_model.clip_layer(model.layer_idx)
model_management.load_model_gpu(model.patcher)
return encode_func(model.cond_stage_model, token_weight_pairs)
def prepareXL(embs_l, embs_g, pooled, clip_balance):
l_w = 1 - max(0, clip_balance - .5) * 2
g_w = 1 - max(0, .5 - clip_balance) * 2
if embs_l is not None:
return torch.cat([embs_l * l_w, embs_g * g_w], dim=-1), pooled
else:
return embs_g, pooled
def prepareSD3(out, pooled, clip_balance):
lg_w = 1 - max(0, clip_balance - .5) * 2
t5_w = 1 - max(0, .5 - clip_balance) * 2
if out.shape[0] > 1:
return torch.cat([out[0] * lg_w, out[1] * t5_w], dim=-1), pooled
else:
return out, pooled
def advanced_encode(clip, text, token_normalization, weight_interpretation, w_max=1.0, clip_balance=.5,
apply_to_pooled=True, width=1024, height=1024, crop_w=0, crop_h=0, target_width=1024, target_height=1024, a1111_prompt_style=False, steps=1):
# Use clip text encode by smzNodes like same as a1111, when if you need installed the smzNodes
if a1111_prompt_style:
if "smZ CLIPTextEncode" in NODE_CLASS_MAPPINGS:
cls = NODE_CLASS_MAPPINGS['smZ CLIPTextEncode']
embeddings_final, = cls().encode(clip, text, weight_interpretation, True, True, False, False, 6, 1024, 1024, 0, 0, 1024, 1024, '', '', steps)
return embeddings_final
else:
raise Exception(f"[smzNodes Not Found] you need to install 'ComfyUI-smzNodes'")
time_start = 0
time_end = 1
match = re.search(r'TIMESTEP.*$', text)
if match:
timestep = match.group()
timestep = timestep.split(' ')
timestep = timestep[0]
text = text.replace(timestep, '')
value = timestep.split(':')
if len(value) >= 3:
time_start = float(value[1])
time_end = float(value[2])
elif len(value) == 2:
time_start = float(value[1])
time_end = 1
elif len(value) == 1:
time_start = 0.1
time_end = 1
pass3 = [x.strip() for x in text.split("BREAK")]
pass3 = [x for x in pass3 if x != '']
if len(pass3) == 0:
pass3 = ['']
# pass3_str = [f'[{x}]' for x in pass3]
# print(f"CLIP: {str.join(' + ', pass3_str)}")
conditioning = None
for text in pass3:
tokenized = clip.tokenize(text, return_word_ids=True)
if SD3ClipModel and isinstance(clip.cond_stage_model, SD3ClipModel):
lg_out = None
pooled = None
out = None
if len(tokenized['l']) > 0 or len(tokenized['g']) > 0:
if clip.cond_stage_model.clip_l is not None:
lg_out, l_pooled = advanced_encode_from_tokens(tokenized['l'],
token_normalization,
weight_interpretation,
lambda x: encode_token_weights(clip, x, encode_token_weights_l),
w_max=w_max, return_pooled=True,)
else:
l_pooled = torch.zeros((1, 768), device=model_management.intermediate_device())
if clip.cond_stage_model.clip_g is not None:
g_out, g_pooled = advanced_encode_from_tokens(tokenized['g'],
token_normalization,
weight_interpretation,
lambda x: encode_token_weights(clip, x, encode_token_weights_g),
w_max=w_max, return_pooled=True)
if lg_out is not None:
lg_out = torch.cat([lg_out, g_out], dim=-1)
else:
lg_out = torch.nn.functional.pad(g_out, (768, 0))
else:
g_out = None
g_pooled = torch.zeros((1, 1280), device=model_management.intermediate_device())
if lg_out is not None:
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
out = lg_out
pooled = torch.cat((l_pooled, g_pooled), dim=-1)
# t5xxl
if 't5xxl' in tokenized:
t5_out, t5_pooled = advanced_encode_from_tokens(tokenized['t5xxl'],
token_normalization,
weight_interpretation,
lambda x: encode_token_weights(clip, x, encode_token_weights_t5),
w_max=w_max, return_pooled=True)
if lg_out is not None:
out = torch.cat([lg_out, t5_out], dim=-2)
else:
out = t5_out
if out is None:
out = torch.zeros((1, 77, 4096), device=model_management.intermediate_device())
if pooled is None:
pooled = torch.zeros((1, 768 + 1280), device=model_management.intermediate_device())
embeddings_final, pooled = prepareSD3(out, pooled, clip_balance)
cond = [[embeddings_final, {"pooled_output": pooled}]]
elif isinstance(clip.cond_stage_model, (SDXLClipModel, SDXLRefinerClipModel, SDXLClipG)):
embs_l = None
embs_g = None
pooled = None
if 'l' in tokenized and isinstance(clip.cond_stage_model, SDXLClipModel):
embs_l, _ = advanced_encode_from_tokens(tokenized['l'],
token_normalization,
weight_interpretation,
lambda x: encode_token_weights(clip, x, encode_token_weights_l),
w_max=w_max,
return_pooled=False)
if 'g' in tokenized:
embs_g, pooled = advanced_encode_from_tokens(tokenized['g'],
token_normalization,
weight_interpretation,
lambda x: encode_token_weights(clip, x,
encode_token_weights_g),
w_max=w_max,
return_pooled=True,
apply_to_pooled=apply_to_pooled)
embeddings_final, pooled = prepareXL(embs_l, embs_g, pooled, clip_balance)
cond = [[embeddings_final, {"pooled_output": pooled}]]
# cond = [[embeddings_final,
# {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w,
# "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]]
else:
embeddings_final, pooled = advanced_encode_from_tokens(tokenized['l'],
token_normalization,
weight_interpretation,
lambda x: encode_token_weights(clip, x, encode_token_weights_l),
w_max=w_max,return_pooled=True,)
cond = [[embeddings_final, {"pooled_output": pooled}]]
if conditioning is not None:
conditioning = ConditioningConcat().concat(conditioning, cond)[0]
else:
conditioning = cond
# setTimeStepRange
if time_start > 0 or time_end < 1:
conditioning_2, = ConditioningSetTimestepRange().set_range(conditioning, 0, time_start)
conditioning_1, = ConditioningZeroOut().zero_out(conditioning)
conditioning_1, = ConditioningSetTimestepRange().set_range(conditioning_1, time_start, time_end)
conditioning, = ConditioningCombine().combine(conditioning_1, conditioning_2)
return conditioning
|