File size: 9,215 Bytes
82ea528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import math
import torch
import comfy


def extra_options_to_module_prefix(extra_options):
    # extra_options = {'transformer_index': 2, 'block_index': 8, 'original_shape': [2, 4, 128, 128], 'block': ('input', 7), 'n_heads': 20, 'dim_head': 64}

    # block is: [('input', 4), ('input', 5), ('input', 7), ('input', 8), ('middle', 0),
    #   ('output', 0), ('output', 1), ('output', 2), ('output', 3), ('output', 4), ('output', 5)]
    # transformer_index is: [0, 1, 2, 3, 4, 5, 6, 7, 8], for each block
    # block_index is: 0-1 or 0-9, depends on the block
    # input 7 and 8, middle has 10 blocks

    # make module name from extra_options
    block = extra_options["block"]
    block_index = extra_options["block_index"]
    if block[0] == "input":
        module_pfx = f"lllite_unet_input_blocks_{block[1]}_1_transformer_blocks_{block_index}"
    elif block[0] == "middle":
        module_pfx = f"lllite_unet_middle_block_1_transformer_blocks_{block_index}"
    elif block[0] == "output":
        module_pfx = f"lllite_unet_output_blocks_{block[1]}_1_transformer_blocks_{block_index}"
    else:
        raise Exception("invalid block name")
    return module_pfx


def load_control_net_lllite_patch(path, cond_image, multiplier, num_steps, start_percent, end_percent):
    # calculate start and end step
    start_step = math.floor(num_steps * start_percent * 0.01) if start_percent > 0 else 0
    end_step = math.floor(num_steps * end_percent * 0.01) if end_percent > 0 else num_steps

    # load weights
    ctrl_sd = comfy.utils.load_torch_file(path, safe_load=True)

    # split each weights for each module
    module_weights = {}
    for key, value in ctrl_sd.items():
        fragments = key.split(".")
        module_name = fragments[0]
        weight_name = ".".join(fragments[1:])

        if module_name not in module_weights:
            module_weights[module_name] = {}
        module_weights[module_name][weight_name] = value

    # load each module
    modules = {}
    for module_name, weights in module_weights.items():
        # ここの自動判定を何とかしたい
        if "conditioning1.4.weight" in weights:
            depth = 3
        elif weights["conditioning1.2.weight"].shape[-1] == 4:
            depth = 2
        else:
            depth = 1

        module = LLLiteModule(
            name=module_name,
            is_conv2d=weights["down.0.weight"].ndim == 4,
            in_dim=weights["down.0.weight"].shape[1],
            depth=depth,
            cond_emb_dim=weights["conditioning1.0.weight"].shape[0] * 2,
            mlp_dim=weights["down.0.weight"].shape[0],
            multiplier=multiplier,
            num_steps=num_steps,
            start_step=start_step,
            end_step=end_step,
        )
        info = module.load_state_dict(weights)
        modules[module_name] = module
        if len(modules) == 1:
            module.is_first = True

    print(f"loaded {path} successfully, {len(modules)} modules")

    # cond imageをセットする
    cond_image = cond_image.permute(0, 3, 1, 2)  # b,h,w,3 -> b,3,h,w
    cond_image = cond_image * 2.0 - 1.0  # 0-1 -> -1-+1

    for module in modules.values():
        module.set_cond_image(cond_image)

    class control_net_lllite_patch:
        def __init__(self, modules):
            self.modules = modules

        def __call__(self, q, k, v, extra_options):
            module_pfx = extra_options_to_module_prefix(extra_options)

            is_attn1 = q.shape[-1] == k.shape[-1]  # self attention
            if is_attn1:
                module_pfx = module_pfx + "_attn1"
            else:
                module_pfx = module_pfx + "_attn2"

            module_pfx_to_q = module_pfx + "_to_q"
            module_pfx_to_k = module_pfx + "_to_k"
            module_pfx_to_v = module_pfx + "_to_v"

            if module_pfx_to_q in self.modules:
                q = q + self.modules[module_pfx_to_q](q)
            if module_pfx_to_k in self.modules:
                k = k + self.modules[module_pfx_to_k](k)
            if module_pfx_to_v in self.modules:
                v = v + self.modules[module_pfx_to_v](v)

            return q, k, v

        def to(self, device):
            for d in self.modules.keys():
                self.modules[d] = self.modules[d].to(device)
            return self

    return control_net_lllite_patch(modules)

class LLLiteModule(torch.nn.Module):
    def __init__(
        self,
        name: str,
        is_conv2d: bool,
        in_dim: int,
        depth: int,
        cond_emb_dim: int,
        mlp_dim: int,
        multiplier: int,
        num_steps: int,
        start_step: int,
        end_step: int,
    ):
        super().__init__()
        self.name = name
        self.is_conv2d = is_conv2d
        self.multiplier = multiplier
        self.num_steps = num_steps
        self.start_step = start_step
        self.end_step = end_step
        self.is_first = False

        modules = []
        modules.append(torch.nn.Conv2d(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))  # to latent (from VAE) size*2
        if depth == 1:
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
        elif depth == 2:
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0))
        elif depth == 3:
            # kernel size 8は大きすぎるので、4にする / kernel size 8 is too large, so set it to 4
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))

        self.conditioning1 = torch.nn.Sequential(*modules)

        if self.is_conv2d:
            self.down = torch.nn.Sequential(
                torch.nn.Conv2d(in_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
                torch.nn.ReLU(inplace=True),
            )
            self.mid = torch.nn.Sequential(
                torch.nn.Conv2d(mlp_dim + cond_emb_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
                torch.nn.ReLU(inplace=True),
            )
            self.up = torch.nn.Sequential(
                torch.nn.Conv2d(mlp_dim, in_dim, kernel_size=1, stride=1, padding=0),
            )
        else:
            self.down = torch.nn.Sequential(
                torch.nn.Linear(in_dim, mlp_dim),
                torch.nn.ReLU(inplace=True),
            )
            self.mid = torch.nn.Sequential(
                torch.nn.Linear(mlp_dim + cond_emb_dim, mlp_dim),
                torch.nn.ReLU(inplace=True),
            )
            self.up = torch.nn.Sequential(
                torch.nn.Linear(mlp_dim, in_dim),
            )

        self.depth = depth
        self.cond_image = None
        self.cond_emb = None
        self.current_step = 0

    # @torch.inference_mode()
    def set_cond_image(self, cond_image):
        # print("set_cond_image", self.name)
        self.cond_image = cond_image
        self.cond_emb = None
        self.current_step = 0

    def forward(self, x):
        if self.num_steps > 0:
            if self.current_step < self.start_step:
                self.current_step += 1
                return torch.zeros_like(x)
            elif self.current_step >= self.end_step:
                if self.is_first and self.current_step == self.end_step:
                    print(f"end LLLite: step {self.current_step}")
                self.current_step += 1
                if self.current_step >= self.num_steps:
                    self.current_step = 0  # reset
                return torch.zeros_like(x)
            else:
                if self.is_first and self.current_step == self.start_step:
                    print(f"start LLLite: step {self.current_step}")
                self.current_step += 1
                if self.current_step >= self.num_steps:
                    self.current_step = 0  # reset

        if self.cond_emb is None:
            # print(f"cond_emb is None, {self.name}")
            cx = self.conditioning1(self.cond_image.to(x.device, dtype=x.dtype))
            if not self.is_conv2d:
                # reshape / b,c,h,w -> b,h*w,c
                n, c, h, w = cx.shape
                cx = cx.view(n, c, h * w).permute(0, 2, 1)
            self.cond_emb = cx

        cx = self.cond_emb
        # print(f"forward {self.name}, {cx.shape}, {x.shape}")

        # uncond/condでxはバッチサイズが2倍
        if x.shape[0] != cx.shape[0]:
            if self.is_conv2d:
                cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1, 1)
            else:
                # print("x.shape[0] != cx.shape[0]", x.shape[0], cx.shape[0])
                cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1)

        cx = torch.cat([cx, self.down(x)], dim=1 if self.is_conv2d else 2)
        cx = self.mid(cx)
        cx = self.up(cx)
        return cx * self.multiplier