File size: 8,451 Bytes
82ea528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
#credit to shadowcz007 for this module
#from https://github.com/shadowcz007/comfyui-mixlab-nodes/blob/main/nodes/TextGenerateNode.py
import re
import os
import folder_paths
import comfy.utils
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from .utils import install_package
try:
from lark import Lark, Transformer, v_args
except:
print('install lark-parser...')
install_package('lark-parser')
from lark import Lark, Transformer, v_args
model_path = os.path.join(folder_paths.models_dir, 'prompt_generator')
zh_en_model_path = os.path.join(model_path, 'opus-mt-zh-en')
zh_en_model, zh_en_tokenizer = None, None
def correct_prompt_syntax(prompt=""):
# print("input prompt",prompt)
corrected_elements = []
# 处理成统一的英文标点
prompt = prompt.replace('(', '(').replace(')', ')').replace(',', ',').replace(';', ',').replace('。', '.').replace(':',':').replace('\\',',')
# 删除多余的空格
prompt = re.sub(r'\s+', ' ', prompt).strip()
prompt = prompt.replace("< ","<").replace(" >",">").replace("( ","(").replace(" )",")").replace("[ ","[").replace(' ]',']')
# 分词
prompt_elements = prompt.split(',')
def balance_brackets(element, open_bracket, close_bracket):
open_brackets_count = element.count(open_bracket)
close_brackets_count = element.count(close_bracket)
return element + close_bracket * (open_brackets_count - close_brackets_count)
for element in prompt_elements:
element = element.strip()
# 处理空元素
if not element:
continue
# 检查并处理圆括号、方括号、尖括号
if element[0] in '([':
corrected_element = balance_brackets(element, '(', ')') if element[0] == '(' else balance_brackets(element, '[', ']')
elif element[0] == '<':
corrected_element = balance_brackets(element, '<', '>')
else:
# 删除开头的右括号或右方括号
corrected_element = element.lstrip(')]')
corrected_elements.append(corrected_element)
# 重组修正后的prompt
return ','.join(corrected_elements)
def detect_language(input_str):
# 统计中文和英文字符的数量
count_cn = count_en = 0
for char in input_str:
if '\u4e00' <= char <= '\u9fff':
count_cn += 1
elif char.isalpha():
count_en += 1
# 根据统计的字符数量判断主要语言
if count_cn > count_en:
return "cn"
elif count_en > count_cn:
return "en"
else:
return "unknow"
def has_chinese(text):
has_cn = False
_text = text
_text = re.sub(r'<.*?>', '', _text)
_text = re.sub(r'__.*?__', '', _text)
_text = re.sub(r'embedding:.*?$', '', _text)
for char in _text:
if '\u4e00' <= char <= '\u9fff':
has_cn = True
break
elif char.isalpha():
continue
return has_cn
def translate(text):
global zh_en_model_path, zh_en_model, zh_en_tokenizer
if not os.path.exists(zh_en_model_path):
zh_en_model_path = 'Helsinki-NLP/opus-mt-zh-en'
if zh_en_model is None:
zh_en_model = AutoModelForSeq2SeqLM.from_pretrained(zh_en_model_path).eval()
zh_en_tokenizer = AutoTokenizer.from_pretrained(zh_en_model_path, padding=True, truncation=True)
zh_en_model.to("cuda" if torch.cuda.is_available() else "cpu")
with torch.no_grad():
encoded = zh_en_tokenizer([text], return_tensors="pt")
encoded.to(zh_en_model.device)
sequences = zh_en_model.generate(**encoded)
return zh_en_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
@v_args(inline=True) # Decorator to flatten the tree directly into the function arguments
class ChinesePromptTranslate(Transformer):
def sentence(self, *args):
return ", ".join(args)
def phrase(self, *args):
return "".join(args)
def emphasis(self, *args):
# Reconstruct the emphasis with translated content
return "(" + "".join(args) + ")"
def weak_emphasis(self, *args):
print('weak_emphasis:', args)
return "[" + "".join(args) + "]"
def embedding(self, *args):
print('prompt embedding', args[0])
if len(args) == 1:
embedding_name = str(args[0])
return f"embedding:{embedding_name}"
elif len(args) > 1:
embedding_name, *numbers = args
if len(numbers) == 2:
return f"embedding:{embedding_name}:{numbers[0]}:{numbers[1]}"
elif len(numbers) == 1:
return f"embedding:{embedding_name}:{numbers[0]}"
else:
return f"embedding:{embedding_name}"
def lora(self, *args):
if len(args) == 1:
return f"<lora:{args[0]}>"
elif len(args) > 1:
# print('lora', args)
_, loar_name, *numbers = args
loar_name = str(loar_name).strip()
if len(numbers) == 2:
return f"<lora:{loar_name}:{numbers[0]}:{numbers[1]}>"
elif len(numbers) == 1:
return f"<lora:{loar_name}:{numbers[0]}>"
else:
return f"<lora:{loar_name}>"
def weight(self, word, number):
translated_word = translate(str(word)).rstrip('.')
return f"({translated_word}:{str(number).strip()})"
def schedule(self, *args):
print('prompt schedule', args)
data = [str(arg).strip() for arg in args]
return f"[{':'.join(data)}]"
def word(self, word):
# Translate each word using the dictionary
word = str(word)
match_cn = re.search(r'@.*?@', word)
if re.search(r'__.*?__', word):
return word.rstrip('.')
elif match_cn:
chinese = match_cn.group()
before = word.split('@', 1)
before = before[0] if len(before) > 0 else ''
before = translate(str(before)).rstrip('.') if before else ''
after = word.rsplit('@', 1)
after = after[len(after)-1] if len(after) > 1 else ''
after = translate(after).rstrip('.') if after else ''
return before + chinese.replace('@', '').rstrip('.') + after
elif detect_language(word) == "cn":
return translate(word).rstrip('.')
else:
return word.rstrip('.')
#定义Prompt文法
grammar = """
start: sentence
sentence: phrase ("," phrase)*
phrase: emphasis | weight | word | lora | embedding | schedule
emphasis: "(" sentence ")" -> emphasis
| "[" sentence "]" -> weak_emphasis
weight: "(" word ":" NUMBER ")"
schedule: "[" word ":" word ":" NUMBER "]"
lora: "<" WORD ":" WORD (":" NUMBER)? (":" NUMBER)? ">"
embedding: "embedding" ":" WORD (":" NUMBER)? (":" NUMBER)?
word: WORD
NUMBER: /\s*-?\d+(\.\d+)?\s*/
WORD: /[^,:\(\)\[\]<>]+/
"""
def zh_to_en(text):
global zh_en_model_path, zh_en_model, zh_en_tokenizer
# 进度条
pbar = comfy.utils.ProgressBar(len(text) + 1)
texts = [correct_prompt_syntax(t) for t in text]
install_package('sentencepiece', '0.2.0')
if not os.path.exists(zh_en_model_path):
zh_en_model_path = 'Helsinki-NLP/opus-mt-zh-en'
if zh_en_model is None:
zh_en_model = AutoModelForSeq2SeqLM.from_pretrained(zh_en_model_path).eval()
zh_en_tokenizer = AutoTokenizer.from_pretrained(zh_en_model_path, padding=True, truncation=True)
zh_en_model.to("cuda" if torch.cuda.is_available() else "cpu")
prompt_result = []
en_texts = []
for t in texts:
if t:
# translated_text = translated_word = translate(zh_en_tokenizer,zh_en_model,str(t))
parser = Lark(grammar, start="start", parser="lalr", transformer=ChinesePromptTranslate())
# print('t',t)
result = parser.parse(t).children
# print('en_result',result)
# en_text=translate(zh_en_tokenizer,zh_en_model,text_without_syntax)
en_texts.append(result[0])
zh_en_model.to('cpu')
# print("test en_text", en_texts)
# en_text.to("cuda" if torch.cuda.is_available() else "cpu")
pbar.update(1)
for t in en_texts:
prompt_result.append(t)
pbar.update(1)
# print('prompt_result', prompt_result, )
if len(prompt_result) == 0:
prompt_result = [""]
return prompt_result |